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Abstract—In recent years there is a surge of interest in
the interpretability and explainability of AI systems, which is
largely motivated by the need for ensuring the transparency
and accountability of Artificial Intelligence (AI) operations, as
well as by the need to minimize the cost and consequences of
poor decisions. Another challenge that needs to be mentioned
is the Cyber security attacks against AI infrastructures in
manufacturing environments. This study examines eXplainable
AI (XAI)-enhanced approaches against adversarial attacks for
optimizing Cyber defense methods in manufacturing image
classification tasks. The examined XAI methods were applied
to an image classification task providing some insightful results
regarding the utility of Local Interpretable Model-agnostic Ex-
planations (LIME), Saliency maps, and the Gradient-weighted
Class Activation Mapping (Grad-Cam) as methods to fortify a
dataset against gradient evasion attacks. To this end, we “at-
tacked” the XAI-enhanced Images and used them as input to the
classifier to measure their robustness of it. Given the analyzed
dataset, our research indicates that LIME-masked images are
more robust to adversarial attacks. We additionally propose
an Encoder-Decoder schema that timely predicts (decodes) the
masked images, setting the proposed approach sufficient for a
real-life problem.

Index Terms—XAI, Deep Learning, Image Classification,
Adversarial Attack, LIME, Grad-Cam, Saliency map

I. INTRODUCTION

The current day and age, also known as the Digital or In-
formation Age, is characterized by complex computing systems
which generate enormous amounts of data on a daily basis.
The digital transformation of industrial environments lead to
the fourth industrial revolution -Industry4.0 [1], with Artificial
Intelligence (AI) being the key facilitator of the Industry4.0 era
by enabling innovative tools and processes including predictive

quality management (Quality4.0) [2]. Despite that fact, the In-
dustrial sector’s state-of-the-art AI development is still far from
utilizing the most sophisticated machine and Deep Learning
(DL) competencies [1]. Lots of challenges have arisen regarding
the implementation of AI approaches in real-life tasks. The
Defense against poisoning attacks along with the Explainability
and Interpretability of AI algorithms can be considered essential
parts for ’triggering’ the wide use of such methods in production
environments. A challenge that may hamper the adoption of
AI methods in the manufacturing sector is the Cyber security
attacks against AI infrastructures in manufacturing environ-
ments. Adversarial attacks against AI systems in manufacturing
can compromise the data used for training AI systems or even
disclose the rules of AI operations. These attacks can therefore
lead to Intellectual Property (IP) theft, while at the same time
compromising the proper operation of AI systems which could
eliminate their benefits and introduce risks in the production
processes. Beyond Cyber security attacks, data unreliability can
be caused by other factors such as ultra-high temperatures,
data transfer errors, interference, and more. Unreliable data
represent one of the main challenges for the graceful operation
of AI systems and as such could lead to biased AI applications
[3].

To address the Cyber security aspect, one could pursue
strategies for strengthening the pretrained classifier against
poisoning attacks as well as detecting adversarial samples that
could harm the model. Methods such as Defensive Distillation
[4], Gradient Obfuscation [5], Feature Squeezing [6] and more,
are used to derive robust models including poisoning training.

The significance of this component against poisoning attacks
was emphasized in [7], that states that even with a strong
“defense”, a poisoning of a 3% of the total training dataset
can lead to a drop of up to 11% in accuracy.

This research proposes a novel method for making a model



more robust against adversarial attacks. We evaluated 3 dif-
ferent types of XAI techniques (LIME, Saliency Maps, and
) enhancing DL approaches for image classification in an
industrial use case against various levels of graded evasion
attacks. The proposed approach of this research consists of an
’encoder-decoder’ architecture for decoding an image in a novel
masked/perturbed image that depicts the most predictive part
of the image that is less vulnerable to adversarial variations.

The remainder of the paper is structured as follows: Section
II presents a brief background of the utilized methods and
approaches, while Section III depicts a short literature review
focusing on XAI in adversarial attack scenarios. Section IV
includes the proposed approach, describes the datasets used, and
how these are leveraged in the proposed architecture. Section V
dives deeper into the results of the conducted research and the
implemented methods/techniques, with their performance being
depicted in both plots and matrices formats. Section VI makes
a short conclusion emphasizing the recommendations for future
research.

II. BACKGROUND

In order to make the motivation behind our research more
clear we introduce the basic concepts of Image Classification,
the XAI methods, and adversarial attacks.

A. eXplainable AI (XAI)
The notion of explaining and expressing a Machine Learning

(ML) model is called interpretability or explainability [8]. This
need for interpretability mainly exists in Deep Neural Networks
(DNN) which are defined by large levels of complexity, thus
appearing to be ”black boxes” [9]. There has been a growing
field of research addressing the problem of ML “black boxes” as
not having clarity or insight also known as eXplainable Artificial
Intelligence (XAI) [10].

Industrial applications combine various AI solutions. To this
end, the XAI domain plays a very sensitive but important role in
industrial applications, as it serves as a bridge between complex
DL models and non-IT experts. To that end, the outcomes of the
XAI method must be precise and easy to understand by domain
experts, in order to increase the notion of “trust” in a real-
time industrial environment. Although during the last couple
of years several XAI methodologies, strategies, and frameworks
have been presented, for the purposes of this research which
focuses on industrial applications we will classify XAI methods
according to their simplicity, the extent of interpretability, and
percentage of dependencies of the analyzed ML/AI model Fig.
1.

Furthermore, complexity-related methods can be further
distinguished to i) intrinsically explainable (Ante-Hoc) mod-
els, which are also referred to as transparent or glass box
approaches and ii) forecasting black-box (Post-hoc) models
that require an understanding of the prediction’s reasoning
steps concerning the explainability source. Apart from that
we can categorize each method based on the scope: i) global
explainability methods examine the algorithm as a whole,
including the training data used, and appropriate uses of the
algorithms while ii) Local explainability refers to the ability of
the system to tell a user why a particular decision was made.

Last but not least, in terms of the various explainability
approaches one needs to explore and identify the differences
between model-specific and model-agnostic solutions. The main
distinction between the two is whether the XAI approach is
dependent on the underlying ML model or whether it could be
applied to others as well.

A more comprehensive overview of various XAI methods
and scenarios, as well as evaluation metrics applied in the
manufacturing domain, was conducted in [11].

B. Adversarial Attack
A lot of research conducted within the last years highlighted

[12] the vulnerability of DNN models from adversarial attacks.
Especially in the domain of image classification, malicious inputs
were used to purposefully create synthetic pictures that, while
almost identical to the actual photos, can trick the classifier into
producing inaccurate prediction outputs as noted by [13].

Solutions which aim to minimize the impact of adversarial
examples affecting ML/AI output can be classified in the fol-
lowing groups: (a) Gradient Masking; (b) Robust Optimization;
(c) Adversary Detection.

• Gradient Masking: as [14] and [15] mentioned Gradient
Masking approaches aim to obfuscate the gradient in-
formation of the ML/AI algorithm in order to mislead
potential malevolent actions.

• Robust Optimization: [16], [17] highlight methods and
techniques whose purpose is to introduce robust classi-
fiers that will not be highly affected in the presence of
adversarial examples.

• Adversary Detection: based on [18] the main purpose
of Adversary Detection methods is to serve as a buffer
between the input space and the ML/AI model. To that end
the main focus of such approaches is to correctly identify
malicious cases and not allow them to reach the classifier.

III. XAI IN ADVERSARIAL ATTACK SCENARIOS

In this research, a lot of focus has been placed on creating
successful and self-resilient XAI algorithms against poisoning
attacks [19]. Many researchers have attempted to fortify the
XAI model from poisoning attacks (e.g., [20] exposed the
vulnerabilities of state-of-the-art Saliency-map-based systems
by manipulating the system’s adversarial model). Similarity
Difference And Uniqueness method (SIDU) [21] was designed
as an XAI algorithm, able to provide visual explanations, with
an ability to identify local and overall regions of objects that
mostly affect the prediction outcome of the model. Furthermore,
[21] SIDU tends to be even more robust in the existence of
adversarial attacks in comparison with ”black-box” models as
its performance can be better explained and understood by
domain experts [21]. The performance of SIDU is compared to
in [22]. When compared to the fixation maps, the results show
that outperforms SIDU; however, when the algorithms are com-
pared to noisy inputs, the results switch, indicating that SIDU
is more solid to adversarial attacks. As [23] Dombrowski et
al. highlighted, explanation maps are vulnerable to adversarial
attacks and manipulations that aim to corrupt the input data.
By simplifying the explanation process, [23] Dombrowski et al.
were also capable of strengthening the system’s robustness of
such attacks.

Another innovative detection approach designed for the inner
structures/layers of DNN classifiers, [24] is the distinction be-
tween normal and adversarial inputs by using Shapley Additive
Explanations (SHAP) values. The majority of the approaches
treated the identification of adversarial data as an anomaly
detection task, in both the input space as well as the internal
activation layer and model architecture, notwithstanding the
fact that much research has also been conducted with an
approach to increase detector performance by manipulating the
inputs [6] or changing the training process [25]. According to
[26], the presence of adversarial cases is an inherent aspect of the
underlying dataset. To that end, one needs to carefully identify
those features that tend to be robust and those that are not.
Furthermore, [26] Ilyas et al. also highlight that the existence of
adversarial examples in the input space can be transferred/affect
more than a single classification model. Consequently, in the
presence of features that are non-robust, the predictive values



Fig. 1: Taxonomy of XAI Methods

cannot be trusted without further evaluation, since even minor
changes in the input space could have a direct impact on
the output. As a result, adversarial evasion attacks focus on
modifying the non-robust characteristics of the input space
whilst substantially maintaining the values of robust features
[26]. This happens since implementing an effective alteration to
robust characteristics necessitates major input changes.

The novelty of this paper is the application and evaluation
of three different XAI methods that enhance the robustness
against adversarial attacks regarding a real use case and dataset
from the manufacturing sector. Since the underlying dataset
is unbalanced and consists of defect detection data, small
differences between the input images need to be detected by
the proposed model. Considering that the intent of adversarial
examples is to (slightly) modify the input space in order to affect
the classification output, the correct operation and analysis is a
very challenging task.

Moreover, this study aims to propose a framework that
leverages XAI techniques to enhance DL approaches for image
classification in industrial use cases. The framework consists of
an ’encoder-decoder’ architecture for decoding an image in a
novel masked/perturbed image that depicts the most predictive
part that is less vulnerable to adversarial variations.

IV. METHOD

A. Proposed Approach (XAI against adversarial attacks)
Most Machine Learning approaches were designed to address

domain-specific problems in which the same statistical distri-
bution was used to generate both the training and test sets.
Adversaries may provide data that contradicts that statistical
assumption when such models are used in reality. This data
could be adjusted to exploit specific flaws and manipulate the
results. In order to provide a more robust Image Classification
against data poisoning attacks, we leveraged XAI methods (i.e.,
LIME and Saliency maps) that may enhance an already trained
DNN model for image classification.

B. Dataset
The dataset analyzed in this research was collected and

provided by Philips. A large portion of (potential) non-
conformances within the Philips factory are related to the visual
appearance of parts and products. Due to the complexity and
costs of the (partial) automation, most of the visual quality
inspections within the Philips factory in Drachten are still per-
formed manually. This dataset has been collected to encourage
the exploration of solutions for (partial) automation of visual

quality systems based on AI that can be trained using small
and incomplete datasets. The key role in developing flexible
automated visual quality inspections has the explainability of
the AI models and the defense against adversarial attacks.

The dataset which contains categorized images of shaver shell
prints is used to train the AI-based systems. A short description
of the dataset is presented in Table I , with three samples of
the dataset are shown in Fig. 2. The label (i.e., the dependent
variable) can take 3 values which are good, double print, and,
interrupted print. Specifically, the dataset is quite imbalanced
as the samples are distributed in each category as follows, while
the interrupted ones are very similar to the good ones:

• good: 76%
• double print: 6%
• interrupted print: 18%

Fig. 2: One sample per class of the dataset

C. Pre-processing
The processing, analysis, and classification of image data

is not a straightforward task and comes with a series of
challenges. Data complexity, imprecision, and deficiency are
some of the most well-known problems when dealing with Image
classification tasks [27]. To that end, pre-processing mechanisms
are of paramount importance to either increase the accuracy
or decrease the complexity of a DL model. Although, various
solutions to pre-process image data have been proposed in
the literature [28], for the purposes of this research image
normalization and grayscale conversion were preferred.

1) Although Grayscaling can be perceived as a simple task
since it just removes the color from a given image con-
sequently making it black and white, it could potentially
affect the computational complexity of an ML model. Using
greyscale, one could remove a series of pixels that are not
required for the domain-specific task, thus reducing the
sparsity and complexity of the given input space to an ML
solution.



TABLE I: Dataset description

Name Shaver images for defect detection

Inputs - Small training data set containing categorized images of shaver shell prints (1 product)
- Small training data for setting up automated quality inspection of a variety of products

Output Candidate unlabelled images for which we request a human annotation.
Dataset description Categorized images of quality inspection of the shaver shell prints. The dataset is imbalanced.
Dataset generation Vision system implemented in pad-printing cell of shaver shells.
Categories a) Good b) Double print c) Interrupted print
Total amount of data instances 3564
Type of Images Color
Dimensions per Image 360 x 220, 96 DPI
Total size of Dataset 350 MB

(a)

(b)

Fig. 3: GradCam examples in 2 layers of the DNN

2) Normalization or “re-scaling” is a well-known technique
that projects pixels from a given image to a predefined
range of values. For simplicity, one could consider the
normalization range to span from 0 to 1 or even -1 to
1, although this is not a standard metric and can be
customized. Therefore, all images that would be analyzed
by an ML/AI solution will have the same influence on
the model since the potential loss of pixel rate has been
minimized. To that end, the learning rate of the ML/AI
model can be standardized across the input space.

D. XAI approaches
The Gradient-weighted Class Activation Mapping (Grad-

Cam) model [29] was used as one of the State-of-the-ART
methods for interpreting the top features (parts of the image)
concerning the ”Label”. To identify the abstracted notion
of a given image, Grad-Cam utilizes gradients to generate
localization maps and highlight essential parts of the image.
Despite the high level of complexity, Grad-Cam is able to
provide intuitive outputs, thus improving the model’s accuracy
and flexibility. An example of applying the Grad-Cam method
is depicted in Fig. 3.

The Local Interpretable Model-agnostic Explanations LIME
model is based on the work of [30] Ribeiro et al. and its focal
point is to identify and understand the behavior of “black-box”
classifiers. Using LIME, the steps that were followed to extract
the ”important” parts of an image are the following and also
depicted in Algorithm 1:

• Define the number of superpixels based on the complexity
of an image.

• Spawn similar samples to the input image and conceal the
previously defined superpixels, thus generating “perturba-
tions”.

• Use the trained AI/ML model for image classification of
the perturbed sample.

• Evaluation of sample importance. To measure the in-
fluence/importance of the given perturbed sample, one
calculates the cosine distance of the sample in relation to
the original image by using a kernel function. The smaller
the distance between the two, the higher the influence of
the perturbed sample.

• Fit a linear regression model to the most important
perturbed samples that were identified in the previous
step, to capture the fitted coefficients of the feature space.
Features with the largest coefficients are the ones that are
of most interest since they affect the “decision-making”
process of a given “black-box” model the most.

When dealing with problems that require elaborated Deep
Learning solutions the level of complexity might rise in an
unprecedented manner, thus making the decision-making pro-
cess of CNN “obscure” even to experts. Saliency maps assist
domain experts to achieve greater insights into the “inner”
decision-making processes of an ML/AI solution, even at each
convolutional layer when dealing with complex CNNs. The
notion of Saliency maps was first introduced by [31] Simonyan
and Zisserman as a technique to enhance human cognition when
dealing with complex classification tasks in ML/AI systems.
Saliency maps are designed to capture human attention in
specific regions of the generated image, by identifying “special”
features/pixels which are highlighted based on their under-
lying importance. To that end, human experts could have a
better understanding of the classification output of a given
ML/AI solution, thus making the human-computer interaction
a straightforward task.

V. RESULTS

A. Preliminary Findings

Initially, we trained a CNN model for image classification.
Following the standard evaluation scheme, 70-30 for train-test
split the results of the evaluation on the test set of images are
depicted in Table II where we can notice that this model achieves
an accuracy of 97% in this 3-class classification task when
normal data are used. This model will be the AI model that
will be used to test its robustness against adversarial attacks.

To this end we used adversarial data created with the
Gradient-based evasion attack [32] method and, evaluated this
model Loss and accuracy on the test set. That means that the
model was trained on normal data (train and validation set)
and then we poisoned the test set using epsilon from 0 to 0.2
and measure the degradation of the accuracy. These are the
results in Table III under the label ”Normal Images”. As we
can see, the accuracy falls heavily after the value of epsilon of
0.02.



Fig. 4: Barplot showing the accuracy of the CNN image classifier against adversarial attacks of various levels (x-axis) on
different types of input data

Results of the image classification task with original dataset

TABLE II
precision recall f1-score support

double print 0.98 1 0.99 46
good 0.97 0.99 0.98 540

interrupted print 0.95 0.88 0.91 126
accuracy 0.97 712

macro avg 0.97 0.96 0.96 712
weighted avg 0.97 0.97 0.97 712

B. Investigation with LIME
Fig. 6 shows 3 examples of the process described regarding

the explainability of the LIME model. We can see 3 examples of
the initial dataset and how they are masked by the LIME based
on the most ”important” super-pixels of the images for their
category. These examples are labeled as perturbed. Then we
can notice the images that are labeled as reconstructed. These
are the results of an encoder-decoder DNN that is trained to
generate the results of the LIME model. The inspiration behind
the usage of this encoder-decoder is depicted in Fig. 5.

Afterwards, we performed a poisoning attack on the recon-
structed images again with the same levels of poisoning and the
results are presented in Table III under the label ”Pertrubed
Images”. We notice that these images are almost as efficient as
the initial ones when no adversarial data are present and more
robust when in the presence of an attack. For the purposes of
this particular study, the correct classification of poisoned sam-
ples is of paramount importance, and therefore this approach

performs up to standard for the poisoned/malicious test set (as
it has an accuracy of 90% when epsilon=0.2). Nevertheless, the
original set of images drops to 66% when epsilon = 0.04, which
lead us to conclude that the LIME mask approach is effective
against Gradient-based evasion attack.

C. Investigation with Grad-Cam
Fig. 7 shows 3 examples of the process described regarding

the explainability of the model. We can see 3 examples of the
initial dataset and how they are masked. Afterward, we applied
the Image Classifier model to the enhanced images. The results
of the classification on the test set are presented in Table IV. We
notice that the model does not perform well when the inputs are
enhanced with highlights. So our initial hypothesis is rejected.

To that end, we applied these images as supplementary
information. Specifically, we trained a Siamese type of DNN
where the 2 similar networks were identical to the initial one.
The results are not encouraging as the overall model did not
achieve accuracy over 50%. That means that the image operates
as noise to the original image.

D. Investigation with Saliency Map
Fig. 8 shows 3 examples of the process described regarding

the explainability with the Saliency map visualization of impor-
tant parts of an image explaining why the model classified each
image. We see 3 examples of the initial dataset and how they are
masked by the Saliency method. Specifically, one can notice the
saliency map, the original image, and also the superimposition
of them.



TABLE III: Results of difference types of enjoined images against various levels of adversarial attack

Pertubed Images Normal Images Sialency Images
Adversarial - epsilon Loss Accuracy Loss Accuracy Loss Accuracy

0 0.874 0.9677 0.1098 0.9705 0.448 0.9312
0.001 0.8741 0.9677 0.1283 0.9663 0.4532 0.9284
0.02 0.8838 0.9621 6.1446 0.6742 0.7465 0.8525
0.04 0.9125 0.9551 12.6796 0.6643 1.409 0.7331
0.06 0.9791 0.9424 18.6595 0.6643 2.0485 0.7331
0.09 1.0812 0.9298 24.2798 0.6643 2.64 0.7331
0.1 1.2043 0.9185 29.793 0.6643 3.2418 0.7331
0.13 1.3412 0.9143 35.163 0.6643 3.9503 0.7331
0.16 1.5038 0.9101 40.0465 0.6643 4.8538 0.7331
0.18 1.7087 0.9087 44.1805 0.6643 5.9688 0.7331
0.2 1.9866 0.9073 47.5323 0.6643 7.2715 0.7331

Fig. 5: How LIME can be used in the prediction phase to make a model more robust against adversarial attacks.

TABLE IV: Results of the image classification task with
Grad-Cam masked dataset

precision recall f1-score support
double print 0.05 0.52 0.09 46

good 0 0 0 540
interrupted print 0.52 0.94 0.67 126

accuracy 0.2 712
macro avg 0.19 0.49 0.25 712

weighted avg 0.09 0.2 0.12 712

Afterwards, we applied the Image Classifier model to the
Saliency-enhanced images. The results of the classification on
the test set are shown in Table V.

Furthermore, we applied poisoning attacks to the saliency-

enhanced image, with the same levels of poisoning. The results
of this are in Table III under the label ”Saliency Images”.
We can notice that these images are almost as efficient as the
initial ones when no adversarial data are present and more
robust when there is an attack. In this study, it is important to
accurately classify the poisoned samples so this approach seems
to perform better for small epsilon, while the performance drops
significantly for epsilon > 0.04. It still performs better than the
original images but worse than the LIME-masked images.

VI. CONCLUSION

This paper examines an XAI-enhanced DNN for address-
ing the problem of cyber defense against adversarial attacks
for manufacturing image classification tasks. LIME, Salience
maps, and Grad-Cam techniques are used to find the most
informative parts of each image with respect to enhancing a



Fig. 6: Example of LIME important superpixel

(a) (b)

(c)

Fig. 7: Grad-Cam of 3 image examples, the first image is a
good print, the second the interrupted one, and the third a
double print one.

trained image classification DL model offering higher explain-
ability and tolerance against adversarial data attacks. These
experiments highlighted that masked/perturbed images (i.e.,
most important super-pixels) are the most tolerant XAI-based
transformation/enhancement to a custom CNN image classifier
against Gradient-based evasion attack. The outcomes of our
experiments show that LIME in reconstruction is better than
the other methods as occlusions make the classifier learn more
robust features and not be affected by small perturbations. Our
defenses rely on the insight that LIME-masked images can serve
as a noise reduction process, helping reduce the magnitude of
adversarial perturbations.

As future work we plan to develop a combination of XAI
methods creating a super-XAI-enhanced image inspired by
fusion models. The enhanced images that will be produced by
this model will be tested against more adversarial and evasion
types of attacks and will be evaluated accordingly. Then a global

Fig. 8: Saliency Map explanation method of 1 image exam-
ple, the first image is the salience map, the second the original
image, and the third the combination of the original image
with saliency map.

TABLE V: Results of the image classification task with
saliency map enhanced dataset

precision recall f1-score support
double print 0.61 1.00 0.76 46

good 0.97 0.99 0.98 540
interrupted print 0.93 0.66 0.77 126

accuracy 0.93 712
macro avg 0.84 0.88 0.84 712

weighted avg 0.94 0.93 0.93 712

encoder-decoder model will be developed based on a pre-trained
model such as the Resnet.
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G. Giacinto, and F. Roli, “Evasion attacks against machine learning
at test time,” in Joint European conference on machine learning
and knowledge discovery in databases. Springer, 2013, pp. 387–402.


