Project Acronym: STAR
Grant Agreement number: 956573 (H2020-ICT-2020-1 — Research and Innovation Action)

Project Full Title: Safe and Trusted Human Centric Artificial Intelligence in Future
Manufacturing Lines
Project Coordinator: Netcompany-Intrasoft

g3STAR

Funded by the Horizon 2020
Framework Programme of the
European Union

DELIVERABLE
D6.4 — Integrated STAR Platform-Final version

Dissemination level PU -Public

Type of Document Report

Contractual date of delivery 30/06/2023

Deliverable Leader DFKI

Status - version, date Final v1.0, 16/11/2023
WP / Task responsible WP6

Keywords: Service platform, validation

This document is part of a project that has received funding from the European Union’s Horizon 2020 research and
Innovation programme under grant agreement No 956573. It is the property of the STAR consortium and shall not
be distributed or reproduced without the formal approval of the STAR Management Committee. The content of
this report reflects only the authors’ view. The European Commission is not responsible for any use that may be
made of the information it contains.

gISTAR N
D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Executive Summary

This deliverable as the final version of the Integrated STAR Platform which supersedes the
previous versions, provides the activities and the progress that has been done by the task 6.2-
Service Platform Integration and Lab Validation (M5-M30).

Task 6.2"Service Platform Integration and Lab Validation”, led by DFKI is a collaboration
between pilot partners with other participants from WP3, WP4, and WP5 and the technology
providers (INTRA-LU, THA, JSI, QLE, UPRC, UBI, SUPSI). The relationship between the STAR
reference architecture and the integrated platform is addressed in this document. The
document explains the repository’s technologies/tools which are utilized in the STAR project
to ease the CI/CD and collaboration between different partners. Furthermore, the essential
information (e.g., description of the components, relation to the reference architecture,
documentation, installation guideline, dependencies, and test cases) about different
artifacts/software developed by technology providers who are coupled to this task and link
them to the testbeds’ scenarios is presented.

4

In the conclusive version, we delve deeper into the intricate integration of each WPs
components utilized in the pilot scenarios. Additionally, the document provides a detailed
overview of the requirements, activities, and shared information that facilitated effective
communication among partners, aligning with the task specifications. Furthermore, a
comprehensive analysis of the communication processes and integration of WPs-level
components, essential for achieving the goals of the STAR ecosystem is presented.

Dissemination level: PU -Public page 2

%BSTA IQ D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Deliverable Leader: DFKI (Hooman Tavakoli)

Contributors: INTRA-LU, THA, JSI, QLE, UPRC, UBI, SUPSI

Reviewers: JSI, R2M

Approved by: INTRA

Document History

Version Date \ Contributor(s) Description
V0.1 23/06/2023 DFKI Initiate the Document

Finalising the conclusion and supported

scenarios

Updating the use cases and scenarios in

each section of components.

V0.4 28/08/2023 DEKI New section for integration between WPs
initiated.

V0.6 02/11/2023 DFKI DFKI final review

V0.7 07/11/2023 DEKI Updating based on the Reviewer's input
from R2M

Finalising the document with remaining

comments from final review

QA and creation of the final submitted

version

V0.2 02/08/2023 DFKI

V0.3 03/08/2023 DFKI, PCL

V0.8 16/11/2023 DFKI

V1.0 16/11/2023 INTRA

Dissemination level: PU -Public page 3

A
GISTAR -
D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Table of Contents

EXECUTIVE SUMMARY ..ucutereurersssassssasssasnnsnsnns 2
TABLE OF FIGURES. .. .ctutreuesserasssrssssssssasssnsnssnsnnnnnnns 6
LIST OF TABLES....cocutetreresersusassnsassnsnnsnnnns 7
DEFINITIONS, ACRONYMS AND ABBREVIATIONScccotmuurmmsmnnsmnnssnsssnsssasssnsssnsssnsssnsssnssnnnss 8
1 INTRODUCGCTION...cututeureresserssnssnsassnssssnns 9
1.1 OVERVIEW AND PURPOSE ..t ututtittstnssensssssssssssssnsssssssssssssssssssssssssssssessssssssssensnenssssssssnennns 9
1.2 RELATIONSHIP TO OTHER DELIVERABLES .tututututsissassnsnenssssssssssnsnesssssssssssnsnenssssssssssnensssnsnssssnes 9
1.3 DELIVERABLE STRUCTURE 41t utututususssssssssssesesssssssssssssessssssssssssssssssssssssssssesssssssssssssssnsnsnsnss 10

2 FROM REFERENCE ARCHITECTURE TO INTEGRATED PLATFORM.....ccccseveusensannnsannnnans 11
2.1 THE STAR REFERENCE ARCHITECTURE 1utuistsssstnsuesssssssssssenenesssssssssnsssnssssssssssnssessnsnssssssssnens 12
2.2 WP LEVEL DEPLOYMENT/PHYSICAL DIAGRAMS TO BE USED FOR THE LAB VALIDATION .vvevvivnivninnienenns 13
2.3 PHYSICAL VIEW OF THE STAR CYBERSECURITY MODULES ..utuisisssenenenensnsssssssenenenenenssssresenenenenss 14
2.4 PHYSICAL VIEW OF THE STAR ACTIVE LEARNING AND XAL MODULES ...vuirenerenenenenrensenensenensenees 15
2.4.1 Physical View of Active Learning MOGUIE.ccuuuereeeeuneseiiiisissiinssisssanssninnanns 15
2.4.2 Physical View of the Explainable AI (XAI) MOGUIEccceeveveeeeeiesiissinnsiinaannnn, 16
2.4.3 Physical Views of the Reinforcement Learning MOQUIEScc.vvveeviiiieeeennnnnn. 16
2.4.4 Physical View of Safety Zones Detection MOGQUIE...............c..cueeieeueieesisissisasssissssinans 16
2.4.5 Physical View of Simulated Reality MOQUIE.................ceueeueeeesesiiiisiiisisiisisisisisassnans 18

2.5 PHYsICAL VIEW OF THE STAR HUMAN CENTRIC DIGITAL TWIN MODULESvuivinirenirenrsnensenensenens 19

3 SOURCE CODE, REPOSITORY & TOOLScotustesrassmssnssnssssssnssnssnssassassassnnsnnsnnsnnssnssnssnns 20
3.1 TECHNOLOGIES AND TOOLS 1 1tutuututsnsussnesssnssssnssssssssessssenssnssssssssssssesssnssssnesssnssssnsssessnenssnes 20
3.2 VERSION CONTROL SYSTEM AND REPOSITORY: GIT AND GITHUB....uiuiiiiinieiinieinieirnneenienennensanes 21
3.3 CONTAINERIZATION 4 1tutsseussnsnsssenssnesssssssssssssnsssssssssssssssssssssssssssssssessssssssnesssnssssnsssenssssnsnns 23
331 J 0o (=) o 24
332 DOCKEITIIE vvvvsseeeeseasessesssttste ettt ettt et s bt tst et a ittt saesssssssanaanaesssssnsnssnssnns 24
CACHC I D o l0 (=) gl 0 112 Jo X = 25

CAC R D o0 (=) g Y- o = 25

3.4 CONTAINER REPOSITORY & REGISTRY MANAGEMENT .uuvuirisnesssnssssnsssensssensssenssnesssnssssnsnsenssnensans 25
3.5 MANAGEMENT/MONITORING WITH PORTAINER «.uuvutustussssnsssenssnesssnssssnesssnsssensssensssenssnssssnsnssnees 26

4 THE STAR COMPONENTSccctetmumammnmansnmasssssssssssssssssassssasssssssssssssssssassssasssssssnsnssnsnssnnes 28
4.1 SECURITY AND DATA GOVERNANCE « vttt ttutsstssssenssnssssnsssssesssnsssssssssnsssesssnesssessssmessssesssnsssenssns 28
4.1.1 (001150 =g 28
4.1.2 LI O =S 43
4.1.3 Inter WP3 integration and COMMUNICAtIONoeuersesersisessssssssissssssssssissssisnnnns 44

4.2 SAFE, TRANSPARENT AND RELIABLE HUMAN-ROBOT COLLABORATION ..uvuvvuenrsnenrenenrenenrensnrensnrensans 47
4.2.1 (0017 = g XTI 47
4.2.2 L= 0= L =S 60
4.2.3 Inter WP4 integration and COMMUNICAtIONoeueesesersisessssssssissssssssssissssisnnnns 60

4.3 HUMAN CENTRED SIMULATION AND DIGITAL TWINS 4uvutuiuiuiuiararsisnesnsnsasasssssssenssnsnsssssssensnsnsnns 61
4.3.1 (0017 = g XTI 61
4.3.2 L= 0= L =S 75
4.3.3 Inter WP5 Integration and COMMUINCALIONccueeeuuaseeeenaaaaeenaaaeeesaaaeennnaanaees /6

5 TESTING, VALIDATION, AND INTEGRATION ROADMAP.....cccotmummmsmmmsmmmssnnsssnssnsssnnsenns 78
5.1 LAB REQUIREMENTS, AND ENVIRONMENT ..cvuttuituseusensensensenssnnssnsnnsnssnsensensensensensssnssnssnsnnsensens 78

Dissemination level: PU -Public page 4

gISTAR

D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023
5.1.1 S L L I = N S 78
5.1.2 HAIrdWare FEGUITEIMIENEeeeeeeeee ettt ettt easaeeeee e e aennas 79

5.2 SUPPORTED SCENARIOS «tutututsssssssssssuessssssssssssssssessnes 79
5.2.1 AULOIMALTION TOOIS. ..cuvvsisisiisissisitsiisissisisistssstsssssastssstssssssssstsssssssssssssnssssnsssesssnens 80
522 Validation the COMPONENESu.eeeeeeeee ettt e e 80
5.2.3 Evaluation the accuracy of the ArCHItECTUIESeeeeeeieeeiieieeeeeeeeeeeeieaeaaenn 80
5.24 The Process of ACCESSING tHE DALA............cuueeeeeeeiaaeiieieesieeieie et aetaseaenaanaaees 80

5.3 INTEGRATION OF TECHNICAL COMPONENTS WITH THE STAR SECURE STORAGE. vuivirirrererenenenensnsasenes 80

6 CONGCLUSION....outmurermssesssassssssssmssassssassnsasnnss 83
REFERENCESocuteueusessssesssassnsassnsannnns 84

Dissemination level: PU -Public page 5

GISTAR
D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Table of Figures

FIGURE 1: HIGH LEVEL REFERENCE MODEL FOR THE FUNCTIONALITIES OF THE STAR PLATFORM. ...vvvvvvinvnnennenes 12
FIGURE 2: STAR FUNCTIONAL MODULES AND LOGICAL VIEW OF THE ARCHITECTURE [STAR-D2.7]....ccvvvuviinnnnns 13
FIGURE 3: DEPLOYMENT DIAGRAM FOR THE CYBERSECURITY MODULES OF THE STAR ARCHITECTURE (I.E., MODULES

DEVELOPED IN WP3)- CAPTURED FROM D2.7 ...eiieiieie ettt e e e e e e e e e ennn e e 15
FIGURE 4: THE DEPLOYMENT DIAGRAM FOR AL SERVICE. .. .tutuueussneurenessensssensasensssensssenssnenssnsssensnsensanensenes 15
FIGURE 5: PHYSICAL VIEW OF THE STAR XAI COMPONENT/MODULES ...cvuuerueenesneeeneesnersneesneenneesneenneenneenns 16
FIGURE 6: PHYSICAL VIEW OF THE SAFETY ZONE DETECTION & FLEET OPTIMIZER MODULES. ..uvvueurrrenennenranensenss 17
FIGURE 7: PHYSICAL VIEW OF THE SAFETY ZONE DETECTION. +1vuvtueursnessensssensasenssnensarensenenssnsssensnsensanensenes 18
FIGURE 8: PHYSICAL VIEW FOR THE SIMULATED REALITY. 41tuttuiutsneurenensenessensssensnsensssensenenssnsnsensnsensanensanes 19
FIGURE 9: HUMAN DIGITAL TWIN CORE INFRASTRUCTURE DEPLOYMENT SHOWGCASE «.vuvvivnesrsneniensnensnsensanensenss 19
FIGURE 107 STAR-AL GITHUB PAGE ...t tutstuisneussnesssnessenssssnssenssesssnsssensasenssmensaresssnenssnessenenressnenssnes 22
FIGURE 11: A COMPLETE GIT BRANCHING MODEL +1vutusussssusssenssnenssnesssnssssnsssensssenssnesssnssssnsssensnsensanenssnes 23
FIGURE 12: AI CYBER-DEFENCE TOOL INTERNAL ARCHITECTURE .. sueutsuesssnsssensssenssensssenssnenssnsnsensnsensanensenes 34
FIGURE 13: CONSOLE OUTPUT OF DOCKER PS ..vueutsuesssnsssensssenssnenssnesssnesssnsssensssenssnenssnssssnssssnsnsensasenssnes 35
FIGURE 14: SSPM HIGH LEVEL ARCHITECTURE 11 utusuessussssnsssesssssnssnssssnesssnsssensssesssnesssnssssnssssnsnsensnnenssnes 41
FIGURE 15: WP3 ARCHITECTURE AND DESIGNED APIS ..uviiuitiiiiiiiieieisiee i et sseaeensaenssnsnssnssssnsnnensanensanes 45
FIGURE 16: ARCHITECTURE OF THE COMPONENTS FOR NATURE LANGUAGE PROCESSING ...uvvvvninenisenenensnnensenss 55
FIGURE 17: INTERACTION BETWEEN VWP4 COMPONENTS. 1vututsueursnenssnssssnssssnsssensssensssesssnenssnsssensssenssnenssnes 61
FIGURE 18: SAFETY ZONE DETECTION & AMR FLEET OPTIMIZER PHYSICAL VIEW 41vuvvnesesnesssnsnssnsssensnsensnnensenss 62
FIGURE 19: DEPLOYMENT VIEW OF HDT COMPONENTS 1vuttututsnenssnenssnesssnssssnsssensssensssesssnsnssnsssensssensssenssnes 69
FIGURE 20: WP5 MAIN INTEGRATIONS 11t vtustuseusensessssnssnssnsensensensensensessessssnssnssnsensensensensensessesnesnsenrenres 77

Dissemination level: PU -Public page 6

gISTAR
D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

List of Tables

TABLE 1: EDGE/CLOUD DEPLOYMENT CONSIDERATIONS FOR THE MAIN COMPONENTS OF THE STAR ARCHITECTURE FROM
D 13

TABLE 2: INDICATIVE OUTPUT OF Al CYBER-DEFENCE TOOL. tututsisrsssnsnsuenssssrsssssnsnsnsnssssssssssnsssnsnssssssssnsnsns 36

Dissemination level: PU -Public page 7

gISTAR

D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573

Definitions, Acronyms and Abbreviations

Final v1.0, 16/11/2023

Acronym/ .

Abbre‘\lliation L5

API Application Programming Interface
CE Community Edition

CLI Command Line Input

CRUD Create Read Update Delete
DLSDR Distributed Ledger Services for Data Reliability
DoA Description of Action

DSL Domain-Specific Language

EAE Edge Analytics Engine

GUI Graphical User Interface

JSON JavaScript Object Notation

JVM Java Virtual Machine

MVP Minimum Viable Product

OEM Original Equipment Manufacturer
P2P Peer-to-Peer

RL Reinforcement Learning

RMS Runtime Monitoring System

SDK Software Development Kit

SLA Service Level Agreement

URI Universal Resource Identifier
URL Universal Resource Locator
UuID Universally Unique Identifier

WP Work Package

XSD XML Schema Definition

DB Database

Dissemination level: PU -Public

Page 8

A
GISTAR -
D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

1 Introduction

1.1 Overview and Purpose

The AI approaches are becoming more favoured approaches in the research and industrial
environment. One vital aspect of employing Al systems is considering the reliability and safety
of the Al systems, and it becomes more demanding when the system is planned to be utilized
in the industrial environment. The main goal of the STAR project is to research, implement
validate and demonstrate the trusted AI technologies related to the production lines and
manufactory’s scenarios. The STAR project provides a holistic approach to tackle a wide range
of trustworthy approaches from data reliability to cybersecurity and AI system explainability.
The STAR project designs and implements multiple prototype systems including systems for
data provenance and traceability, cyber-defence against some of the most prominent attacks
that target Al systems, Explainable AI (XAI) algorithms, human-centric AI-based systems such
as human-centric digital twins, systems for the trusted and safe operation of mobile robots in
production lines, human-robot collaboration systems, simulated reality systems for effective
cobots, to name but a few.

The STAR project’s intentions are applied in the industrial environment and need to be proven
and tested in different testbeds with different scenarios. WP6 aims to integrate, validate, and
evaluate the STAR goals in the various testbeds with different use cases. Task 6.2 "Service
Platform Integration and Lab Validation”, in this work package which starts from M5 and
continues till M30 of the project’s lifespan, focuses on the integration of the project technical
development and prototyping in the STAR platform for secure and safe Al in the
manufacturing area.

In this task, the main purpose is to focus on the integration of the technology providers’
components into the STAR platform. Considering that the vast amount of the components in
the STAR projects are software or middleware, it is essential to utilize the modern approaches
for CI/CD (Continuous Integration / Continuous Deployment), based on the DevOps principles
and tools. Furthermore, in this task, we consider the approaches which facilitate the packaging
and distribution of the software/ middleware components, like leveraging the containerization
approaches (e.g., Docker images).

The integration process in this task is driven by the reference architecture of the STAR project.
Moreover, the interface between different components of the platform from different
technology providers is one of the key points fulfilled within this task. Finally, for the validation
phase, we considered that the integrated platform and its components, and functionalities are
validated in different use cases from different pilots to identify and implement improvements
to the various part of the integrated platform.

1.2 Relationship to Other Deliverables

In this section, other deliverables related to the D6.4 are listed. In addition, we address why
various deliverables are related to this document.

D2.7- “STAR Reference Architecture and Blueprints”.

In the STAR reference architecture, we model the relationship between different technologies
which are categorized into three clusters that build the STAR Al platform. Since in this
deliverable, we focus on the test, validation, and integration of different STAR
components/technologies into the STAR platform, it is inevitable to have a wide perspective

Dissemination level: PU -Public page 9

A
GISTAR -
D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

on how these different technologies bind and communicate together. Moreover, for the
Physical diagram for the lab validation, which is addressed in section 2, we leverage this
deliverable.

D2.5- “Data Models and Data Collection”.

In the deliverable 6.4, we list different components and provide test cases related to the inter-
component and inter-WPs as the atomic test. For this reason, there is a crucial binding
between the data models and data collection and this deliverable.

D3.1 and D3.2 “Decentralized Reliability for Industrial Data and Distributed Analytics”.

The D3.1 and D3.2 are focusing on the project’s decentralized approach for provenance and
tracking of industrial data utilized in AI systems. The Distributed Ledger Services for Data
Reliability (DLSDR) (subsection 4.1.1.2) as a component for Security and Data Governance
(Section 4.1) majorly references to this deliverable.

1.3 Deliverable Structure
In this deliverable we report on:

« The reference architecture and link that to the integrated platform. Moreover, we
provide the WP-level deployment/physical diagram used for the lab validation.

« The repository initiated for the artifacts, software, and source codes from technology
providers.

« The components that are utilized in the STAR project to address the Pilots’ use cases.
These components are categorized into three domains: “Security and Data
Governance”, “Safe, Transparent and Reliable Human-Robot Collaboration”, and
“Human Cantered Simulation and Digital Twin”. We explain the different components
and their relation to the use cases. Furthermore, we establish the integration and
relationships among the components within the WPs across these three categories.
This approach ensures a comprehensive understanding of the interconnections and
relationships among various technologies.

o Ultimately, within this task, we have conducted a thorough list of activities
encompassing the testing, validation, and integration of diverse artifacts within the
integrated platform. This encompassed fulfilling lab requirements, initializing the
platform, and addressing supported scenarios pertinent to the task's objectives.
Additionally, we focus on integrating the components to encompass the entire STAR
ecosystem. This integration aids us in gaining a comprehensive perspective on the
interoperability requirements among different artifacts and pilots at the project level.

Dissemination level: PU -Public page 10

gISTAR N
D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

2 From reference architecture to integrated
platform

The STAR project is facilitated by a wide range of systems and functionalities. The project
takes a comprehensive approach that addresses multiple aspects of Al trustworthiness from
data reliability to the cybersecurity and explainability of AI systems. Consequently, the STAR
project designs and implements multiple prototype systems, systems for data provenance and
traceability, cyber-defence against some of the most prominent attacks that target Al systems,
Explainable AI (XAI) algorithms, human-centric Al-based systems such as human-centric
digital twins, systems for the trusted and safe operation of mobile robots in production lines,
human-robot collaboration systems, simulated reality systems for effective cobots and more.

Although each of the STAR-related prototype systems can be researched, implemented, and
tested independently, it is inevitable to have a holistic reference architecture that connects
them since most of them are intricately connected. For instance, the XAI systems can be used
to support the operation of cyber-defence strategies (e.g., by detecting abnormalities in their
operation), as well as the operation of simulated reality systems (e.g., through helping in the
production of reliable data to set up the simulated environment). In this context, STAR is not
limited to researching each of the above systems individually. It also explores ways and
methods that could boost the optimal interplay and integration of the above systems towards
a holistic and efficient approach to trusted Al in manufacturing.

For the reason of the optimal integration of the STAR AI systems, the STAR project also
researched the structuring principles that provide the optimal integration of the various Al
prototyping and documents the software architecture that reflect these structuring principles.
In this direction, the project introduced a reference architecture model that can support the
development, deployment, and operation of end-to-end integrated systems for trusted Al in
industrial environments. The model is characterized as “reference” as it is not limited to
supporting the integration and deployment of the STAR platform. It is also destined to serve
as a blueprint for a wider class of trusted Al systems i.e., helping integrators of Al solutions
to develop and deployed trusted Al in dynamic manufacturing environments.

The STAR reference architecture (STAR-RA) model considers the specifications and
functionalities of the various Al building blocks of the project’s solutions and provides a set of
fundamentals for their integration into trusted Al solutions. As previously discussed, the STAR
architecture model is aimed at being abstract and general to support the development of
trusted AI beyond the boundaries of the project. To this end, the model is developed based
on principles and concepts of existing reference architecture models for Industry 4.0, the
Industrial Internet of Things (IIOT), and Bigdata systems. Especially, existing models are
extended and/or customized to address the STAR project’s trusted Al vision. Hence, the STAR-
RA model aims to be usable and exploitable by the numerous manufacturers and AI/IIoT
solution providers for manufacturing environments, which can already be fitted to existing
reference architectures for Industry 4.0.

The development and research activities of the project, the specification of the reference
scenarios for trusted Al in manufacturing, the development of the various modules of the
STAR platform and solutions, the specification/evolution of Industry 4.0 and AI standards, as
well as the collection and management of data for training and developing Al systems have
direct influence and therefore have an essential impact on the development and validation of

Dissemination level: PU -Public page 11

%aSTA IQ D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

the STAR architecture. Hence, the agile approach to specify, validate, and document the
STAR-RA is chosen. Especially, the STAR-RA is specified in two iterations. The first iteration
was driven by the project’s activities during the first semester of STAR's lifetime, while in the
second phase, the STAR-RA incorporated inputs from the final versions of the STAR reference
scenarios and technologies specifications. Moreover, between the two iterations, the project
used the first version of the architecture to drive the development and integration of
technical/technological systems in WP3, WP4, WP5, and WP6. This enabled the project to
receive feedback from the actual, implementation, deployment, and use of the first version of
the architecture. Accordingly, the project used this feedback to fine-tune the specification of
the architecture. Consequently, there has been an inevitable bind between the reference
architecture of the STAR project and scenarios from testbeds and technology providers.

2.1 The STAR Reference Architecture

The major functionalities of the STAR platform can be clustered into three categories. Figure
1 illustrates the high-level reference model for the functionalities of the STAR platform. The
mentioned domains are as follows:

Cyber Security Domain Human Robot Collaboration Domain Safety Domain

Data Probes & Data Connectors Active Learning Renforcement | eaming

h ol cement

Data Provenance & Traceability Feedback Module - NLP
—
i

Human Digital Twin — Worker Safety

Seaurity Policies Manager

Risk Assmsn;l;t“:m Mitigation Simulated Realty Fatigue Monitoring System
! .‘

Human Digital Twin

Explainable Artificial Intelligence (XAI)

STAR AI / Open Analytics Platform

Figure 1: High Level Reference Model for the Functionalities of the STAR Platform.

Cyber Security Domain. This block contains functionalities that ensure the reliability and
security of industrial data and AI algorithms that are trained and tested based on them. The
functionalities of these domains support and reinforce the trustworthiness of the project’s
functions in the other two domains.

Human-Robot Collaboration Domain. Provides the functionalities to fulfil the trusted
collaboration between robots and workers in the industrial environment.

Safety Domain. Provides the safety of industrial operations containing the workers and/or
autonomous systems.

As depicted in Figure 1, the functionalities of the three mentioned domains depend on the XAI
and Al algorithms. The XAI plays a crucial role in the operation of the security platform by
supporting the defence strategies in the cybersecurity domain, data generation in a simulated
reality, and active learning functionalities in the human-robot collaboration as well as the
development of human digital twins in the safety domain.

Dissemination level: PU -Public page 12

gISTAR
D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Color Coding
Digital Manufacturing | |PLSOR STAR Blockchain Platform H wes Factory
y i
s

Platforms 9 .
9 ‘- Security
Q‘e@ S&Ad Bl $ i

CPPS Sy‘stems Officer &
Machines Factory IT

m Personnel
L
C - TEUTATER 315 BRI i TRTAT
‘ ifigation AP| Configuration
‘. STAR Security
1 h i Folicies
Manager

HMI & Feedback

Factory Workers
&
Plant Managers

e
Al Application _M
GUI
Simulation and

RL for AMR etecti
el

(@)

Fatigue

Monitering
System

Figure 2: STAR Functional Modules and Logical View of the Architecture [STAR-D2.7]

In Figure 2, the STAR functional modules, as well as the logical perspective of the architecture,
are presented. As illustrated in the image above, the STAR platform starts with receiving the
data from the factory environment and providing different types of services and functionalities
to the cyber-security teams of the factory and also to other factory stakeholders. (e.g.,
industrial engineers, plant managers, factory workers).

In Figure 2 different modules from each WPs and their relations to others are presented.

« For the WP3, Data and Algorithms Verification SC, and Security Policies Repository are
the focused modules.

e For the WP4, STAR XAI Models and Library, Simulated Reality, NLP Module, and
Feedback Module, and Active Learning are the target components.

e For the WP5, labeled with red color, we have Fatigue Monitoring System, human-
centered Digital Twin, RL systems and AMR Safety, and Human Model Images.

o Al Application GUI, STAR Machine Learning and Analytics Platform, Industry 4.0 AI
Applications, and Production Process Knowledge Base are the related modules to the
WP6.

2.2 WP level Deployment/Physical Diagrams to be used for the

Lab Validation

The physical deployment of the STAR platform mainly refers to the cloud/edge deployment
model. Based on a different feature of the operations (e.g., Datapoints availability, energy
efficiency, low latency-real-time performance, and privacy), they can be deployed in cloud or
edge servers.

The main components of the STAR architecture can have different physical deployment
choices. In Table 1, the major STAR components which are needed to be deployed as a part
of the lab validation and the different options for the physical deployments are illustrated.

Table 1: Edge/Cloud Deployment Considerations for the main components of the STAR architecture
from D2.7

Dissemination level: PU -Public page 13

gISTAR

D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023
Data Probes / Data Connectors Cloud/Edge, specifically: Cloud: Monitoring Engine;
Edge: Data Collectors (Beats)
STAR Blockchain (DLT) Cloud
AI Cyber Defence Strategies Cloud

Risk Assessment and Mitigation| Cloud
Engine (RAME)

Security Policies Manager (SPM) Cloud/Edge, specifically: Cloud: Policy Management
Engine, Policy Validation; Edge: Policy enforcement,
Policy Validation

XAI Library Cloud/Edge
Simulated Reality Cloud/Edge
Active Learning (AL) Cloud

NLP Module (incl. TTS, STT,| Cloud
Sentiment Analysis)

Production Processes Knowledge Cloud
Base

Feedback Module Cloud

The physical view in this task of test, validation, and integration of the lab environment
provides us a wide perspective and clear view of how different components at the WP level
require separate cloud application server(s). In the following, we describe different
components briefly. The details about this section can be reached through the D2.7.

2.3 Physical View of the STAR Cybersecurity Modules

Figure 3 illustrates the complete deployment diagram/physical view of the components from
WP3, which can be containerized in Docker images. In this figure, the number of the 7 VMs
(Application Server) for different components is presented. Moreover, the minimum
requirements for each component to be deployed are mentioned. This STAR security and data
governance for AI systems in manufacturing infrastructure consists of DLSDR infrastructure,
Runtime Monitoring System, Cyber-Defence Strategies, Policy Manager, and Risk Management
and Mitigation Engine components/artifacts.

Dissemination level: PU -Public page 14

gISTAR

D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023
- - Network
End User Client -Anplication Server 2
{4vCPU, 16 GB RAM, 100GE disk space}
«Devices {l «Devices {l
Browser Mobile App a ! |:Application Server 5 :Application Server 6
«Components & GBE RAM. 160GE disk space) (4vCPU. & GE RAM. 160GE disk space)
Riks Asses.
and Mit. Eng. (OLISTIC)
«Components (£ | «Component= |
Blockchain Node 0 Blockehain Node 1
Command Line Interface [Command Line Interface [
QL Database [
-Application Server 1 No-SaL Detebase [
(44CPU, 1668 RAM 160GE disk soace)
fou 0
«Compenents E Certification Autnority [] Certification Autnority []
RMS OLISTIC Backend [
we D wo D
! «Component» E
Ordering Service docker
bt
Orderer 1 |
-Application Server 7
«Components Orderer 2 0 (4YCPU. 8 GB RAM, nace)
Common Repos & Bus A
Orderer 3
o «Components $:|

Blockchain Node 2

Data Bus b -Application Server 3 “Application Server 4
(2VCPU._4 GB RAN, 40GB disk space) (4vCPU, 16 GB RAN, 100GE disk space)

Observation Reposi marD
{l «Components

Al Cyber Defence Tool : Orderer 5

- «Components
SecCM Repository [S5PM ML Models
ML-based Detection D
OFA D Model
«Components

docker
Rule's storage [:
Gutput &) Application Backend[]

(REST AP or Kafka)

Ll
Management GUI D

docker

Orderer 4 D

Command Line Interface [

State Database [

Peer

Certification Authority D

AP 0

]

Repository

i

docker

o

g !
Q
g
]

ker

Figure 3. Deployment Diagram for the Cybersecurity Modules of the STAR Architecture (i.e., modules
developed in WP3)- Captured from D2.7

2.4 Physical View of the STAR Active Learning and XAI Modules

The source code for the Active Learning and XAI modules is managed in private repositories.
The final version of the XAI service offers the Machine learning models functionalities through

the REST API.

2.4.1 Physical View of Active Learning Module

STAR project specifically utilizes the Supervised learning approach of the active learning
module. Figure 4 illustrates the integration between gateway services with some machine
learning models and their communication with AL services.

_

GATEWAY SERVICE SOME SERVICE | AL SERVICE :
I

Tcp | I

I

' I

' I

| TCP I

| I

' I

: DB I

' I

e e e e e ____ .

Figure 4: The Deployment Diagram for AL Service.

Dissemination level: PU -Public page 15

gISTAR
D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

2.4.2 Physical View of the Explainable AI (XAI) Module

XAI for the STAR project is proposed to be deployed to a Kubernetes environment (Figure 5)
and can be deployed in a containerized microservice. Regarding the data management and
communication with other components of the platform Kafka queue, and Zookeeper, JDBC
and REST API connection is utilized.

Gt b A et

st
A S -
et e

ortn) § evmnoen orton)8 evmrey o -
" . . .

-y

Comme mage . o
gy

et Iy
- we 3]
o— A G Sy

if

1 1
s
Ot e
Vi

Figure 5: Physical View of the STAR XAI Component/Modules

2.4.3 Physical Views of the Reinforcement Learning Modules
The RL module consists of two different modules from WP4, and WP5.

1. Safety Zone Detection Module
2. Simulated Reality Module

2.4.4 Physical View of Safety Zones Detection Module

The safe movement and collaboration between workers and Automotive Mobile Robot (AMR)
are based on two modules:

1. Safety Zone Detection.
2. AMR Fleet Optimizer.

The physical view of the two modules is depicted in Figure 6. Moreover, it is shown in this
diagram that the two modules are communicating to each other relying on the Human Centric
Digital Twin through an MQTT Broker. The main output of the safety zone detector is an
“average spatial heatmap” representing a probabilistic occupancy of the production lines
based on fixed RGB cameras deployed in the factory. This description represents the global
environment, including human and object location as occupancy cells. The results from
object/human detection and localisation allow to update the heatmap representation. Indeed,
these heatmaps are simplified and anonymized representations of the occupancy of the work
floor in real time. It serves to feed the reinforcement learning module. The Safety Zone
detection module publishes the position of the occupied cells and the AMR Fleet Optimizer
subscribes for this message and then forecasts Robotino trajectories in order to avoid potential
crowded areas.

Dissemination level: PU -Public page 16

gISTAR
D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

AMR Fleet Optmizer

F W % A A
Workers'
location
AGV(s)
status
Objects’
location T5.3
Safety Zones
Workers' :
location Detection System
3D view
Objects’ L
location
A A A 4W0rkers'
[i location))
o RS E R B e et b] Video/image
[nfogttonfogfoegfogt Al fgtglonlt Hr 1 ! streams
o Objects’ 1 |
location Hy ||V

|:| |:| HDT MQTT loT Middleware

r GV(s)
status
, - - — _— _— _—— \ , —_— - [—_— —_— \
I Gateway(s) I I AGV(s) I Vision system(s)
|
T o] I l
[[
l bo--t oo ! l optiont.2 |
-_— e - e - - - s s s s .

Option1.1

Figure 6: Physical View of the Safety Zone Detection & Fleet Optimizer modules.

Figure 7 presents each subcomponent of the Physical view of the Safety Zones Detection
System. The systems start with exploiting videos from ceiling-mounted cameras in the testbed
environment as input and will deliver the spatial heatmaps (worker location and object
location) as results of the analytics. In the middle of the figure, the fusion 3D scene
component combines the two deep learning algorithms namely:

1. The skeleton extraction to follow the human gesture and pose,

2. the detection and classification of unknown non-static objects in the scene.

Dissemination level: PU -Public page 17

%aSTA IQ D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Safety Zone detection System: GPU access
2
A *
| Skeleton extraction

oo and Fusion 3D scene
Background subtraction understanding:

3
o

Cameras
streams

Container o Human location

Object Iocat.|on Worker location
Robot location

! Object location

. Known object detection -
B,) Container

\/z

Container

K2

Figure 7: Physical View of the Safety Zone Detection.

All these components are dockerized to facilitate the deployment.

2.4.5 Physical View of Simulated Reality Module

The Simulated Reality component utilizes different batch jobs to generate synthetic data. The
output of these batch jobs will be consumed by live services that will deliver synthetic data
upon request, potentially in a way that can also categorize the data as easy or difficult to
classify through the Confidence Assessment subcomponent. All subcomponents will need
access to a common data store or shared filesystem containing the Input Dataset and Auxiliary
Data needed including weights for pre-trained models (Figure 8). Their outputs will consist of
a trained generator like generator model from GAN that can produce synthetic data upon
request. These need to be accessible through the Data Serving services (e.g., through a
Shared File System). Data Serving should return synthetic data fitting a certain use-case
specification upon request together with a potential confidence assessment. The transferring
and communication can be done with the REST APL.

Dissemination level: PU -Public page 18

%BSTA IQ D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Training Workflows (Batch,

Live .
Services Conf.
(Docker)

Figure 8: Physical View for the Simulated Reality.

2.5 Physical View of the STAR Human Centric Digital Twin

Modules
The Human Digital Twin (HDT) and its components are deployed as cloud applications (Figure
9: Human Digital Twin Core Infrastructure deployment showcaseFigure 9). Specific instances
are deployed to support the different use cases of the project.

HDT Core

]]

hdm-web J { orchestrator Y¥our Module Your Gateway

|]
hdm
O L £ >

Figure 9: Human Digital Twin Core Infrastructure deployment showcase

The HDT Core Infrastructure is an extensible and flexible IIoT based platform supporting the
creation of customised data representations of production systems and their entities, including
humans. Thanks to its modular infrastructure with interchangeable components, which ease
the digital twin instantiation and ramp-up, the HDT is applied in two different STAR use-cases:
DFKI pilot supporting the integration AMR Fleet Optimizer and Safety Zone Detection; PHILIPS
pilot supporting data collection from wearable devices and quality control thought active
learning.

Dissemination level: PU -Public page 19

gISTAR

D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

3 Source Code, Repository & Tools

3.1 Technologies and Tools

This section provides a list of code management, packaging and deployment tools, along with
their high-level description, that facilitate the STAR software development teams with the
integration and deployment and validation of the STAR solution. A summarization of the
technologies and software tools follows below:

Hetzner!: The software components that comprise the STAR development platform
(i.e. artifact repository) have been deployed on virtual hosts, which are, in essence,
cloud servers instantiated on a public cloud provider, named Hetzner Cloud.

Git?: A free and open-source distributed Version Control System (VCS). It is used for
tracking changes in any set of files, usually used for coordinating work among
programmers collaboratively developing source code during software development. It
has been designed to handle everything from small to very large projects with speed
and efficiency. A Git repository (or repo for short) contains all of the project files and
the entire revision history.

GitHub?3: A web-based open-source Git repository hosting service. It offers a graphical
interface with several built-in features, such as version control, issue tracking, code
review, wiki, etc. Multiple developers can concurrently create, merge and delete parts
of the code they are working on independently, at their local system before applying
the finalized changes to a shared GitHub repository.

Docker*: A set of Platform-as-a-Service (PaaS) products that use OS-level
virtualization to deliver software in lightweight packages called containers. Docker can
package an application and its dependencies in a virtual container that can run
seamlessly on any Linux, Windows, or macOS computer. This enables the application
to run in a variety of locations, such as on-premises, in a public cloud, and/or in a
private cloud.

Docker Daemon?®: Services running on multiple development virtual servers for the
deployment of containerized services. Docker Daemon is a background process that
manages Docker images, containers, networks, and storage volumes. The Docker
Daemon constantly listens to Docker API requests and processes them.

JFrog Container Registry®: An application that implements a private Docker
Registry in which one can store and distribute the Docker images of the projects’
artifacts. It is used to securely control where the images are being stored awaiting
containerization, thus integrating image storage and distribution tightly into the STAR
development workflow. For the needs of the STAR project, a self-hosted JFrog
Container Registry instance has been deployed to Hetzner Cloud.

Portainer’: An open-source tool for managing container-based applications in various
virtualization environments. It can be used to set up and manage the environment,

! Cloud provider’s official website: https://www.hetzner.com/cloud

2 Git official website: https://git-scm.com/

3 GitHub official website: https://github.com/

4 Docker official website: https://www.docker.com/

> Docker overview on official website: https://docs.docker.com/get-started/overview/
6 JFrog Container Registry official website: https://jfrog.com/container-registry/

7 Portainer official website: https://www.portainer.io/

Dissemination level: PU -Public page 20

https://www.hetzner.com/cloud
https://git-scm.com/
https://github.com/
https://www.docker.com/
https://docs.docker.com/get-started/overview/
https://jfrog.com/container-registry/
https://www.portainer.io/

%gSTA HQ D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

manage containers lifecycle, monitor application performance, triage problems, and
enable role-based access control. For the needs of the STAR project, a Portainer
instance has been deployed to Hetzner Cloud.

3.2 Version Control System and Repository: Git and GitHub

During collaborative software development projects, the source code is usually stored in
shared remote repositories, accessible by all team members with various permission levels.
Version control, also known as source control and revision control is the practice of tracking
and managing changes to code stored in such repositories. Consequently, Version Control
Systems (VCS) can be defined as software tools that help software teams manage changes to
source code over time. Their value is twofold: on the one hand, they keep track of every
modification to the code in a special kind of database, thus allowing reversion of the code to
previous states in case a breaking bug is introduced; on the other hand, by employing clever
branching strategies, they enable developers to simultaneously work collaboratively on the
same codebase, without cancelling one another's effort.

As mentioned in D2.7 [STAR-D2.7], the STAR component’s code management is based on
two popular open-source technologies, Git and GitHub®. Git serves as the Version Control
Systems (VCS), while GitHub is a powerful and intuitive Git repository hosting service. The
latter offers a web-based graphical interface with several built-in features. It allows the
creation of collaboratively owned and maintained code repositories, code branching and
merging, version control, issue tracking, code review, wikis, etc. Multiple developers can
concurrently create, merge and delete parts of the code they are working on independently
at their local system, before pushing the changes back to branches of the shared GitHub
repository. The instantiated STAR GitHub Organization can be found under the following URL:
https://github.com/star-eu (see Figure 10 below). Under this Organization, several
repositories and Teams for the STAR components and services have been created.

The private repositories GitHub STAR Organization host are accessible only to the project
partners developing each tool and, in addition, to INTRA for administration purposes.
Additionally, some of the repositories (i.e., XAI-Library®) which are offered as open source can
be accessed and downloaded by anyone but code can be committed only from the repository’s
maintainers. Each component repository should include a project with source code and scripts
for executing the testing and deployment pipelines. The minimal required files for such a
project are the following:

« Dockerfile: A text-based script of instructions that is used to create a container
image.

e README.md: A mark-up file with information on the module’s purpose and
deployment instructions.

8 https://github.com/
9 https://github.com/star-eu/xai-library

Dissemination level: PU -Public page 21

https://github.com/star-eu
https://github.com/
https://github.com/star-eu/xai-library

%BSTA IQ D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

@ Overview Repositories 8 B Projects] Packages A% Teams 4 A People 9 b Settings

STAR EU Follow
' Software developed under the umbrella of the H2020 STAR project | Starting date: 1 January 2021 | Duration: 36 Months | Grant agreement ID: 956573
Axtfollower @@ hitps/fstar-aiew/ W @starAleu [info@star-aieu

@ View as: Public ~

README . md s

STAR - EU Horizon 2020 »

You are d repositories

wing the README and pir
as a public user.

You can pin repositories visible to anyone.

vith tasks that most successful

STAR is a joint effort of 15 European partners towards designing new technologies to enable the deployment of standard-based secure,
safe, reliable and trusted human centric Al systems in manufacturing environment. STAR aims to research, develop, validate and make
available to the community leading-edge Al technologies including explainable Al, active learning systems, simulated reality systems,
human-centric digital twins, advanced reinforcement learning technigues and cyber-defense mechanisms, thus becoming a catalyst for
the deployment of advanced Al systems in the manufacturing shop-floor Discussions

Artificial intelligence (Al) systems are increasingly improving the automation of production in the manufacturing sector. But in order for Set up discussions to engage with your
these systems to be trusted and applicable when replacing human tasks in dynamic operation, they need to be safe and adjustable - to
react to different situations, security threats, unpredictable events or specific environments. STAR will rise to this challenge by designing
new technologies to enable the implementation of standard-based, secure, safe, reliable and trusted human-centric Al systems in
manufacturing environments. The project will aim to research and integrate leading-edge Al technologies like active learning systems,
simulated reality systems, explainable Al, human-centric digital twins, advanced reinforcement learning techniques and cyber-defence
mechanisms, to allow the safe deployment of sophisticated Al systems in production lines. People

STAR is funded under the EU Horizon 2020 programme. eu .gae ” .
-

community!

Turn on discussions

* Grant agreement ID: 956573
« Official website: star-ai.eu

 Social media: Twitter and LinkedIn

Invite somecne
e Contact O3 info@star-ai eu

Popular repositories Top languages

Shell @Java @ Jupyter Notebook
.github Public xai-library Public

| framework for eXplainable Artificial Intelligence (XAl) methods and

petnal data Most used topics Manage

@ Jupyter Notebook netcompany-intrasoft wp3 blockchain

data-reliability distributed-ledger-services
[Repositories

Q, Find a repository Type ~ Language ~ Sort v B New

disdr Private
Distributed Ledger Services for Data Reliability

o Yo (o 110 Updated 11 minutes ago

rms-data-collection Private A

o Yo (o 110 Updated 15 minutes ago

rms-kafka-observations Private

Figure 10: STAR-AI GitHub page

Well-structured Git repositories usually follow a specific branching model in order to guide the
developers on the commit methodology. A proposed branching model for STAR (or part of it)
has been introduced by [Driessen 10] and a complete version of which is shown in Figure 11
below.

Dissemination level: PU -Public page 22

A
GISTAR -
D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

release
feature

branches develop branches hotfixes

master

b : >$ by
£ 0.1
~

. Severe bug
Feature

for future
release

Major
feature for
next release

fixed for
production:

Incorporate
bugfix in
develop

Start of
release
branch for

From this point on,
“next release”
means the release
after 1.0

Bugfixes from
rel. branch
may be
continuously
merged back
into develop

[/

Figure 11: A Complete Git branching model’

Note that the development of a specific branching strategy remains at the discretion of each
STAR component’s development team and is not restricted to a specific model.

3.3 Containerization

Containerization is the packaging of software code with just the operating system (OS)
libraries and dependencies required to run the code to create a single lightweight executable
- called a container - that runs consistently on any infrastructure. More portable and resource-
efficient than virtual machines (VMs), containers have become the de facto compute units of
modern cloud-native applications.

Containerization allows developers to create and deploy applications faster and more securely.
With traditional methods, code is developed in a specific computing environment which, when
transferred to a new location, often results in bugs and errors. For example, when a developer
transfers code from a desktop computer to a virtual machine (VM) or from a Linux to a
Windows operating system. Containerization eliminates this problem by bundling the

10 https://nvie.com/posts/a-successful-git-branching-model/

Dissemination level: PU -Public page 23

https://nvie.com/posts/a-successful-git-branching-model/

gISTAR N
D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

application code together with the related configuration files, libraries, and dependencies
required for it to run. This single package of software or «container» is abstracted away from
the host operating system, and hence, it stands alone and becomes portable - able to run
across any platform or cloud, free of issues.

3.3.1 Docker

As mentioned in D2.7 [STAR-D2.7] for the STAR software packaging we have considered
Docker!! images which is currently the dominant technology/methodology and is considered
a de facto. A Docker image is a file, comprised of multiple layers, used to execute code in a
Docker container. An image is essentially built from the instructions for a complete and
executable version of an application, which relies on the host OS kernel. Docker is an open
platform for developing, shipping, and running applications. With Docker, an infrastructure
can be managed in the same way applications are managed. Docker offers shipping, testing,
and deploying methodologies easily and quickly, where the time between writing code and
running it in production can be significantly reduced.

Docker provides the ability to package and run an application in a loosely isolated environment
called a container. The isolation and security allow you to run many containers simultaneously
on a given host. Containers are lightweight because they don't need the extra load of a
hypervisor but run directly within the host machine’s kernel. This means you can run more
containers on a given hardware combination than if you were using virtual machines. You can
even run Docker containers within host machines that are actual virtual machines [Docker].

Docker images can be published in a shared repository, such as the Docker Registry!? or
DockerHub'* and through the docker pull command or through the docker-compose pull
functionality these images can be retrieved from the Docker registry and deployed together
via a single configuration file. Containerization thus provides OS level virtualization. This
means that multiple applications running in containers on a single host, access the same OS
kernel. Hence, it is faster and more lightweight than isolating applications using VMs.

Containers have an initial configuration which does not affect the configuration of other
containers, even though they share the same host OS. This eliminates errors due to
unexpected conflicts or missing dependencies, which are common when applications are
installed on a single host without isolation. In addition, in more demanding installations due
to increased load of the system, Docker is perfectly suitable to be configured with load
balancing mechanisms that can scale up the performance of the system.

3.3.2 Dockerfile

Every Docker container starts with a simple text file containing instructions for how to build
the Docker container image. This file, which is by convention named * DockerFile”without any
file extension, automates the process of Docker image creation. It is essentially a list
of command-line interface (CLI) instructions that Docker Engine will run in order to assemble
the image. Dockerfiles can be as complicated as needed; they might even contain multiple
parent Docker images, as well as some Build-Automation commands.

11 https://docs.docker.com/
12 Docker Registry official website: https://docs.docker.com/registry/ (accessed August 2021)
13 DockerHub official website: https://hub.docker.com/ (accessed August 2021)

Dissemination level: PU -Public Page 24

https://docs.docker.com/
https://docs.docker.com/registry/
https://hub.docker.com/

%QSTA HQ D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Last but not least, repositories might also contain a “.dockerignore” file. Such files allow
developers to mention a list of files and/or directories which they might want to ignore while
building the image. This would definitely reduce the size of the image and also help to speed
up the Docker build process.

3.3.3 Docker Compose.

As mentioned in D2.7 [STAR-D2.7] Docker Compose is a tool for defining and running multi-
container Docker applications. It uses YAML files to configure the application's services and
performs the creation and start-up process of all the containers with a single command. The
“docker-compose.ym/” file is used to define an application's services and includes
configuration options. In STAR as the preferred container runtime management method was
Docker Compose every component is accompanied by a “docker-compose.ym/” file which
facilitates its installation. Additionally, different collections of interoperable components that
are used as solutions for the STAR use cases are provided as ready to install “docker-
compose.yml”files.

Information on how to edit a “ docker-compose.ym/”file can be found at Docker Docs [Docker]
and more specifically at the Get started with Docker Compose!“.

3.3.4 Docker Usage

There are many tutorials to containerize an application or a system and offer it thru a
repository management service which span from beginners to more advanced ones depending
on the technologies used. An intermediate one that doesn’t focus on a specific technology and
provides the relevant aspects that are necessary to establish a well-defined contract between
Dev and Ops teams can be found in [Souzal8], which provides a checklist on how to
“dockerize” any application. Specifically, the following steps are suggested:

« Choice of a base Image.

« Installation of the necessary packages.

o Addition of custom files.

» Definition of users that will run your container.
« Definition of the exposed ports.

« Definition of the entry point.

« Definition of the configuration method.

o Externalization of the data.

e Logs handling.

e Logs rotation and other append only files

3.4 Container Repository & Registry Management

A container registry is a directory where container images are stored so they may be pulled
and pushed. However, the physical places where images are kept are called repositories. Each
repository maintains a set of related images with the same name. A repository's images each

14 https://docs.docker.com/compose/gettingstarted/

Dissemination level: PU -Public page 25

%QSTA HQ D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

reflect a distinct deployment of the same container. A specific image is identified by either its
tag or its own unique reference [Kisller21].

As mentioned in D2.7 [STAR-D2.7] for the STAR project, JFrog Container Registry has been
selected to be used to setup a secure private Docker Registry. The JFrog Container Registry
supports Docker registries and Generic repositories, allowing users to build, deploy and
manage container images while providing powerful features with fine-grained permission
control behind a sleek and easy-to-use UI. JFrog Container Registry imposes no limitations on
the number of Docker Registries one may apply. The STAR JFrog Container Registry services
can be accessed from:

o Dashboard URL: https:// http://88.198.191.126/ui/

» Private docker registry URL is: https://88.198.191.126/artifactory/starregistry/

Both require the firewall rules to be configured appropriately (i.e., allow access from a remote
location) to be accessed.

3.5 Management/Monitoring with Portainer

Since the preferred deployment strategy is the docker containerization to facilitate the
ecosystem management and monitoring there are various offerings. One of the proposed for
the STAR deployment, is the Community Edition (CE) of Portainer®.

Portainer CE is a lightweight management toolset that allows you to easily build, manage and
maintain Docker environments. Portainer offers a GUI (Graphical User Interface) which
alleviates the complexity of using CLI (Command Line Input) commands. More specifically, via
Portainer one can execute, in a user-friendly manner, various actions otherwise typed in the
operating system’s command line. Below is a list of actions that can be performed thru
Portainer:

e Build and remove Docker images

e Push Docker containers through the various states of their lifecycle (Start, Stop,
Restart, Remove, etc.)

» Create networks between Docker Engines running on different machines
e Administer volumes assigned to containers
o Inspect container logs and parameters
o Using Log viewer.
e Run commands directly on the operating system enveloped by the container
e Monitor memory, CPU and network usage
o Expert configuration built into the software.
o Including pre-validation checks for complex deployments
+ Management of access control and LDAP authentication.
« Remote console with process performance viewer.
e Manage Docker Swarm service stacks and nodes (if existent).

15 https://www.portainer.io/products-services/portainer-community-edition/

Dissemination level: PU -Public page 26

http://88.198.191.126/ui/
https://88.198.191.126/artifactory/starregistry/

gISTAR
D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

o Aggregation view of swarm clusters.

Directions on how the technology providers can install the Portainer environment in a local
Docker instance can be found at the Portainer’s Deployment!® documentation. General
documentation along with user and configuration guides can be found in Portainer’s
Documentation’.

16 https://portainer.readthedocs.io/en/stable/deployment. html
17 https://portainer.readthedocs.io/en/stable/#

Dissemination level: PU -Public page 27

https://portainer.readthedocs.io/en/stable/deployment.html
https://portainer.readthedocs.io/en/stable/

%gSTA HQ D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

4 The STAR Components

4.1 Security and Data Governance
4.1.1 Components

4.1.1.1 Runtime Monitoring System

4.1.1.1.1 Short Description

Runtime Monitoring System (RMS) enables a real time service that collects security-related
data from monitored IoT system components or applications and stores them for further
processing. Analytics algorithms, like the AI Cyber Defence component, analyse the collected
data to detect abnormal patterns. Additionally, the collected data can be directly used by the
Security Policy Manager after applying special filters for reporting data exceeding “normal”
thresholds. The system also features monitoring probes responsible for the data collection
and publishing to the monitoring platform. The RMS provides appropriate configuration and
management mechanisms over the monitoring probes as well as appropriate data models and
data transformation engines that will maintain the probe information along with their status
and will enable the probe creation, reconfiguration, and discovery.

4.1.1.1.2 Relation with the Reference Architecture

RMS, depicted in Figure 2 above, is a Data collection framework which provides the
specifications and relevant implementation to enable a real time data collection,
transformation, filtering, and management service to facilitate data consumers (e.g., Al Cyber
Defence Module and Security Policy Manager). The framework can be applied in IoT
environments supporting solutions in various domains (e.g., Industrial, Cybersecurity, etc.).
For example, the solution may be used to collect security related data (e.g., network, system,
solution proprietary, etc.) from monitored IoT systems and store them to detect patterns of
abnormal behaviour by applying simple (i.e., filtering and pre-processing) mechanisms.

4.1.1.1.3 Dependencies
The RMS component is using Elastic Stack'® which is comprised of Elasticsearch, Kibana, Beats,
and Logstash (also known as the ELK Stack) and Kafka for the Data Bus. The different
components are used as follows:

o MetricBeats, HeartBeat: collects monitored data (i.e., CPU utilization data) and
availability status (i.e., network Camera availability) using Beats deployed to the
Manufacturing Plant (demo VM).

o HTTP Poller: collects user data (i.e., image production rate) by polling the exposed
services (repository).

» Logstash: Raw monitored Data are transformed and filtered to match the used Data
Model (i.e., Observations) and identified rules (i.e., report values between specific
thresholds).

+ Kafka & ElasticSearch: the collected preprocessed data are published to the Data
Bus (Kafka) in order to be accessed by the Security Policies Manager & ElasticSearch
for permeate persistence, visualization and monitoring.

18 https://www.elastic.co/elastic-stack/

Dissemination level: PU -Public page 28

https://www.elastic.co/elastic-stack/

A
GISTAR -
D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

o Security Policies Manager retrieves the preprocessed data by the Data Bus
(Kafka) in order to be combined with other alerts/data (i.e., the AI Cyber
Defence Strategies).

« Kibana: for persisted data visualization.

RMS is also using MongoDB!® for the configuration repository and Java Spring Boot?
framework for developing its microservices with Spring Framework.

4.1.1.1.4 Availability
The runtime monitoring system is available under the Runtime-Monitoring-System GitHub
group?’.

4.1.1.1.5 Installation/Deployment guidelines
The RMS installation is supported by Docker Compose. A “docker-compose.yml” file is provided
which automates the installation of the RMS infrastructure.

RMS

To launch the RMS containers, run

] sudo docker-compose up
where the docker-compose.yml file is located.

To undeployed RMS containers run

| sudo docker-compose down
where the docker-compose.yml file is located.

Data Collection (Metric Beat)

To start Metric Beat for collecting the remote system utilization run the following commands:

cd metricbeat/
sudo sh runmb.sh
Where the metric beat folder is located.

In Kibana:

¢ In'Index Management' you should see the 'logstash-xxx-yyy' index. Metricbeat outputs
to logstash, so this is the only index shown.

e Go to 'Index patterns' and create a new index pattern. Name it 'logstash*'. Select the
@timestamp field for temporal ordering.

¢ Go to the 'Discover' section to see the incoming events.

e Optional: In the 'Dashboard' section we can create a visual representation (graphs) of
certain event fields.

In the 'logstash' folder:

» config/

19 https://www.mongodb.com/
20 https://spring.io/projects/spring-boot
21 https://github.com/star-eu/rms-data-collection

Dissemination level: PU -Public page 29

GISTAR

H2020 Contract No. 956573

D6.4 - Integrated STAR Platform-Final version
Final v1.0, 16/11/2023

® logstash.yml: The Logstash settings file. Contains options that control Logstash
execution. Pipeline settings, location of config files, etc. Replaces command-

line flags.

®m pipelines.yml: Instructions for running multiple pipelines in a single Logstash
instance. Contains the paths to the configuration file(s).

o pipeline/

® |ogstash.conf: The main configuration file of a pipeline. It contains the logstash
plugins to be used, the settings for each plugin, as well as the output (i.e.
elastic). Allows the manipulation of event fields, the use of conditionals for

process events, etc.

4.1.1.1.6 Documentation

More information on the RMS component and its subcomponents can be found in section 3 of
D3.6 [STAR-D3.6]. Information on the RMS API can be found in section 3.2 of D3.6 [STAR-

D3.6].

4.1.1.1.7 Test Cases
The following test cases have been iden

tified for an initial validation of the RMS interactions

with other STAR components (intercomponent testing).

Test ID

RMS-01

Title

Persistence of a Data Source Manifest (DSM)

Pre-Requisite

e DSM should have been already specified.
e The Resource Registry is deployed.
e The Resource Registry interface is reachable.

Expected Outcome

A DSM is persisted, and an ID is assigned to it

Actions Expected Result Result Comment
The user sends an HTTP POST requestiThe user receives an [Receive
to /data_source/dsm. HTTP response with the the DSM
persisted DSM and an JSON
id assigned to it. object
with an ID
assigned
to it and
an HTTP
status
code OK
(200)
Test ID RMS-02
Title Retrieval of a Data Source Manifest (DSM) record

Pre-Requisite

e The Resource Registry is deployed.

Dissemination level: PU -Public

Page 30

$ISTAR e
D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

e DSM should have already been persisted and its
id should be known.
e The Resource Registry interface is reachable.

Expected Outcome The requested DSM instance is returned
Actions Expected Result Result Comment
The user sends an HTTP POST requestiThe user receives an [Receive
to /data_source/ :id. HTTP response with the the DSM
persisted DSM. JSON

object and

an HTTP

status

code OK

(200)

4.1.1.2 Distributed Ledger Services for Data Reliability (DLSDR)

4.1.1.2.1 Short Description

DLSDR provides the means for tracking and tracing industrial data for AI algorithms, notably
the definitions of the data sources used, the data used to configure STAR Al algorithms and
finally the data for persisting their results. To this end, it provides services to the Al algorithms
and applications utilizing their results. The DLSDR module is aimed at reinforcing the reliability
and the security of the source data used in the STAR system. It records information (i.e.,
metadata) about the acquired data to facilitate the detection of abuse and tampering attempts
against these data. Specifically, data ingested in the DLSDR can be queried by other STAR
modules to facilitate the validation of datasets and to ensure that the data that are used have
not been tampered. More details can be found in the Decentralized Reliability for Industrial
Data and Distributed Analytics deliverable [STAR-D3.1 and STAR-D3.2].

4.1.1.2.2 Relation with the Reference Architecture
DLSDR, depicted in Figure 2 above, offers the following functionalities to the STAR Security &
Data Governance framework:

» For persisting/retrieving the Al algorithms configurations metadata which can describe
an algorithm type along with its various instantiation configurations across time by
using the Analytics Engine Configuration (AEC) service (see D3.1 [STAR-D3.1] section
3.3.1), and

e For persisting/retrieving AI algorithm results by utilizing the Analytics Results
Publishing (ARP) service (see D3.1 [STAR-D3.1] section 3.3.2) using the Observation
data structure. Samples of the blockchain persisted Analytics’ results can be consumed
by the Security Policy Management component to confirm their validity compared to
the results that are retrieved from the Data Bus. Additionally, for data validation,
critical results can be directly retrieved from the Data provenance & Traceability
component.

Dissemination level: PU -Public page 31

%QSTA HQ D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

4.1.1.2.3 Dependencies
The Blockchain MVP will assume the existence of three organizations where we will maintain
a virtual machine hosting their personal Hyperledger Fabric node, as well as its companion
applications. Those machines will require the following Docker containers:

o A Peer Node*

o A CouchDB where the ledger state is being persisted??
o A Certificate Authority (CA)**

o A Command-Line Interface (CLI)*

e A Java application exposing an API making available the Node’s functionalities to the
centralized Blockchain Service Backend and, eventually, the outside world.

One of the machines will be additionally hosting the following Docker containers:

o Multiple instances of the Ordering service
» A Certificate Authority for the above instances
» Fabric Channel(s)

e Chaincode(s)

4.1.1.2.4 Availability
The Distributed Ledger Services for Data Reliability component is available under the Data-
Provenance-And-Traceability GitHub 26 .

4.1.1.2.5 Installation/Deployment guidelines

Images for all those Docker components that are required for the Hyperledger Fabric
deployment are provided by the Hyperledger Fabric development team via DockerHub?’. The
deployment process has been made semi-automatic by employing Docker Compose?® scripts
to pull those images, containerize them and deploy them as Docker Swarm stacks (more
details on that are following in the next section). It needs to be highlighted, however, that
deployment of Fabric components and the configuration of the network between them is a
process more complicated than a simple “docker compose up” command, since rather complex
configuration files and TLS certificates ought to have been prepared in advance. More
information about the blockchain infrastructure deployment can be found in D3.1 [STAR-D3.1]
under section 5.

4.1.1.2.6 Documentation
The Distributed Ledger Services for Data Reliability component documentation for data models
and API specifications can be found in the Decentralized Reliability for Industrial Data and
Distributed Analytics deliverable [STAR-D3.1] under section 4. More specifically the following
services are documented:

22 peer Node downloadable from DockerHub: https://hub.docker.com/r/hyperledger/fabric-peer
23 CouchDB downloadable from DockerHub: https://hub.docker.com/r/hyperledger/fabric-couchdb
24 Fabric CA downloadable from DockerHub: https://hub.docker.com/r/hyperledger/fabric-ca

2> Fabric CLI downloadable from DockerHub: https://hub.docker.com/r/hyperledger/fabric-tools
26 https://github.com/star-eu/dlsdr

27 Hyperledger’s user account on DockerHub: https://hub.docker.com/u/hyperledger

28 Docker Compose official documentation: https://docs.docker.com/compose/

Dissemination level: PU -Public page 32

https://hub.docker.com/r/hyperledger/fabric-peer
https://hub.docker.com/r/hyperledger/fabric-couchdb
https://hub.docker.com/r/hyperledger/fabric-ca
https://hub.docker.com/r/hyperledger/fabric-tools
https://github.com/star-eu/dlsdr
https://hub.docker.com/u/hyperledger
https://docs.docker.com/compose/

GISTAR

H2020 Contract No. 956573

D6.4 - Integrated STAR Platform-Final version

o Distributed Ledger Node Management

Final v1.0, 16/11/2023

o Registration and Discoverability of the Platform Nodes in section 4.1.1 of D3.1

[STAR-D3.1].

« Data Provenance & Traceability Services

o Analytics Engine Configuration (AEC) service: Information about the exposed
API, data models and usage can be found in section 4.2.3 of D3.1 [STAR-D3.1]

o Analytics Results Publishing (ARP) service: Information about the exposed API
can be found in section 4.2.4 of D3.1 [STAR-D3.1].

4.1.1.2.7 Test Cases

The following test cases have been identified for an initial validation of the DLSDR interactions
with other STAR components (intercomponent testing).

Test ID

SDG-01

Title

Persistence of new Processor Manifest (PM) record

Pre-Requisite

PM should have been already specified

Expected Outcome

A PM is persisted, and an ID is assigned to it

Actions

Expected Result

Result

Comment

The user sends an HTTP POST request
to /processor_config/pm.

The user receives an
HTTP response with the
persisted PM and an id
assigned to it.

DSM

Test ID

SDG-02

Title

Retrieval of a Processor Manifest (PM) record

Pre-Requisite

should be known

PM should have already been persisted and its id

Expected Outcome

The requested PM instance is returned

Actions

Expected Result

Result

Comment

'The user sends an HTTP GET request to|
/processor_config/:id.

The user receives an
HTTP response with the
persisted PM.

PM

4.1.1.3 Al Cyber-Defence Strategies (ACDS)

4.1.1.3.1 Short Description

The AI Cyber-Defence module aims to defend the STAR-enabled manufacturing platforms
against poisoning and evasion attacks. Smart manufacturing ecosystems nowadays consist of
several Al-powered components in order to improve their production practices. However, Al
systems, are susceptible to attacks that target both the training (i.e., poisoning) and the

Dissemination level: PU -Public

Page 33

%QSTA HQ D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

operational (i.e., evasion) phases of Deep Neural Networks (DNNs). In this direction, the Al
Cyber-Defence component will boost the robustness of DNNs against adversarial inputs and
attempts to contaminate the training datasets, and against active attacks that aim to evade
the inference process of AI models.

The implementation of the tool has been completed (see D3.4) and is served as a dockerised
application and is based on a flask server which works in synergy with AI/ML libraries and is
combined with KAFKA in order to enable the input digestion and output sharing. The internal
architecture of the tool is given in Figure 18. The reader can refer to D3.4 for more details on
the AI Cyber-Defence tool and the defence strategies put forth.

ETAR Blockchain

Algorithm
Configurations

Algerithm Configurations &
Dataset collection attributes
Adversarial

Instances | [

F\‘ [u bdlt‘d

)
5
s
w
i
&R
% o
4
i
&
n

[=]

o

E

@

113

“

Training

Input Data

Training OR Testing Alerts

Input Data

STAR Analytics WP2 Data Bus

(KAFKA)

M achlne Learni ng
Model

Sweaming _____ User Interface — =
Input Data .

Figure 12: AI Cyber-Defence tool internal architecture

4.1.1.3.2 Relation with the Reference Architecture

The Al Cyber-Defence tool is positioned at the AI Security and Data protection layer of the
STAR architecture and works in synergy with the blockchain-based data provenance
mechanisms, the Data management and Analytics engine, and the Explainable AI. The output
of the AI Cyber-Defence mechanism will be used as input to the Security policy manager to
perform a risk assessment and attack mitigation functionalities. Hence, the aim of the Al
Cyber-Defence module coincides with the aim of the AI security and data protection layer
which is to boost the safety, reliability and transparency of the functionalities of the upper
operational layers of STAR.

4.1.1.3.3 Dependencies

e Major libraries: The component is built in python, currently its major dependencies
include: python >= 3.7, tensorflow >= 2.6.4, keras >= 2.6.0, torch >= 1.11.0, and
Adversarial Robustness Toolbox (ART) v1.10, flask=2.1.2, Kafka-python=2.0.2,
pandas=1.4.2, openpyx|=3.0.10, pillow=9.1.1

e Environment: The tool comes packaged as a docker container to be platform
independent and make management of python, OS and Blockchain dependencies
easier and more flexible.

o Components: The Al Cyber-Defence tool comes with KAFKA integrated in order to be
able to handle inputs and outputs to and from the tool in an interoperable and unified
manner.

Dissemination level: PU -Public page 34

%} D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

4.1.1.3.4 Availability
Currently, the code of the tool is under continuous development as new defence strategies
are examined. The conditions on whether and/or under which license the code and the artifact
will become available have not been clearly defined yet.

4.1.1.3.5 Installation/Deployment guidelines
For the first ever execution through console one must navigate to the location of the .yml file
and type the command:

\ docker-compose up -d ‘

This first execution shall delay a little because it pulls pre-built images from online repositories
(e.g. Docker Hub).

4.1.1.3.5.1 \Verification
To verify that everything is well, one may type:

| docker ps

root@ubuntu: /home/ubuntu/star# docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS
NAMES

8747b491ade8 star_consumer "bash -c "sleep 45; .." 4 days ago Up 20 seconds
star_consumer_1

2ea39825a180 confluentinc/cp-kafka:7.1.1 "/etc/confluent/dock.” 4 days ago Up 21 seconds ©.9.0.0:9892->00
->9892/tcp, 0.0.0.0:9999->0000/tcp, :::9999->0009/tcp kaftkal

424dc1495004 confluentinc/cp-zookeeper:7.1.1 “/etc/confluent/dock.” 4 days ago Up 21 seconds 2888/tcp, ©.0.0.
p, :::2181->2181/tcp, 3888/tcp zool

ecdd19b6d5ed star_producer “python3 serverProdu.” 4 days ago Up 21 seconds ©.0.0.0:80930->80
->8888/tcp star_producer 1

As can be seen the application has two main services, the A) star_consumer responsible for
managing the inputs received and the B) star_consumer which hosts the main business logic
of the detection mechanism for the poisoning and evasion attacks. In addition, C) KAFKA is
used as the component that will store the output of the detection process, as well as D)
Zookeeper to complement the operation of KAFKA.

To open their logs, one may type: docker logs -f <container name>. To exit the log type
Ctr/+C.

4.1.1.3.5.2 Un-deployment
To stop and remove all containers one may type the command: docker-compose down

4.1.1.3.6 Documentation

4.1.1.3.6.1 Description of the input’s outputs of the components
Input sources of Al Cyber-Defence tool:

STAR Secure Storage infrastructure: This entity is a vital component in the STAR
project architecture as it provides a unified datalake for all Al-enabled STAR
components to consume data mainly for training reasons. That is, the Al Cyber-
Defence module acquires datasets (e.g., images) for training purposes of the Al
models. To establish this communication, the AI Cyber-Defence tool integrates the
necessary TRINO connectors.

Dissemination level: PU -Public page 35

A
GISTAR -
D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

e STAR Runtime Monitoring system: The runtime monitoring system is used for the
acquisition of statistical measurements stemming directly from core systems of the
manufacturing floor. These measurements may indicate the presence of anomalous
behaviours that could be used as inputs in the inference process. It has to be noted
that this dependency with the RMS and XAI has been only approached from a scientific
perspective. D3.4 provided a new chapter, based on the publications in (Afzal-
Houshmand, 2021) and (Afzal-Houshmand, 2023) on the use of explainable artificial
intelligence to enhance data trustworthiness in crowd-sensing systems. Thus, the
actual connection in the context of the integrated framework has not been realised.
However, the reader can refer to D3.4 for more details regarding the designed
scientific approach on the use of sensory data to detect poisoning and evasion attacks.

« Data streaming pipelines: This entity refers to the data sources that are used during
the actual deployment of the STAR platform to the pilot sites. Towards this phase of
the project, the Al Cyber-Defence tool takes the necessary steps in order to be able
to handle input data stemming from pilots in a streaming mode.

Output of AI Cyber-Defence:

The goal of the Al Cyber-Defence tool is to detect poisoning and evasion attacks against the
STAR Al Systems. In this regard, the detection process, depending on the deployed detection
model, a detection label is generated (evasion/poisoning) as well as a confidence level of the
AI model. An indicative example of the output including additional metadata of the process is
given below.

The APIs exposed by the Al Cyber-Defence tool has been documented in D3.4 in section 2.4.
Table 2: Indicative output of AI Cyber-Defence tool.

{
"id": "1ee5f356-632e-11ec-90d6-0242ac120003",

"dataSourceID": "3341e5b2-632e-11ec-90d6-0242ac120003",
"assetID": "4daef4f2-487e-48e1-8f8f-d526d36aa5cd",
"dataKindID": "65a7604e-9a94-4a74-9a34-3e44c6cebd49",
"timestamp": "2022-01-10 13:01:29.709071",
"location": {
"geolLocation": {
"latitude": "53.107731",
"longitude": "6.088499"

H
"virtualLocation": "8.162.203.200"

)
"value": {
"attackID": "f777d14b34c3cdff92468fbfa55aeeddd8298745",
"attackContext": "Evasion attack",
"Confidence": "90.12",
"timestamp": "2022-01-10 13:01:22.709095"

¥
¥

Dissemination level: PU -Public page 36

G3STAR

H2020 Contract No. 956573

4.1.1.3.7 Test Cases

D6.4 - Integrated STAR Platform-Final version
Final v1.0, 16/11/2023

Test ID

AICD-01

Title

Detect the injection of an adversarial input into
the AI pipelines of STAR.

Pre-Requisite

e Pretrained adversarial neural network that
performs the detection

e Preconfigured parametrization of the
detection algorithm

Expected Outcome

Classification of the injected input to an
adversarial category

Actions Expected Result Result Comment

An input is given into the STAR tools [¢ Raise of alarm Executed | The structure

pipeline e provision of a of the output
confidence level has defined
on the prediction above. The

test has been
completed in
context of the
experimental
phases of the
tool
development
and in the
context of the
integration
actions with
the pilots.

Test ID

AICD-02

Title

Detect the presence of an adversarial example in
the training datasets.

Pre-Requisite

e Dataset to be stored on the Storage
infrastructure of STAR

e Pre training model for the detection of
poisoning attacks

Expected Outcome

Detection of poisonous instances in the datasets

Actions

Expected Result Result Comment

Dissemination level: PU -Public

Page 37

%} £l D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Adversarial instances are present in | ¢ Raise of alarm Executed | The structure

training datasets stored in the STAR | ¢ Detection of of the output
Storage Infrastructure specific instance has been
in a dataset. defined above.

The execution

of the test case

has been

performed in
the context of
the
experimental
process in
D3.4.

Test ID AICD-03

Correct acquisition/validation of tool configuration

LS through STAR Blockchain

e Blockchain APIs are known
Pre-Requisite e Initial configuration set has been stored on the
blockchain

Positive response if the configuration is valid and

SRSt QUi negative otherwise.

Actions Expected Result Result Comment

The AI Cyber-Defence tool triggers the | Positive response if | Executed. | The test has

Blockchain API to acquire the correct | the configuration is been
configuration. valid and negative executed in
otherwise. the context
of the
integration
actions.

4.1.1.4 Risk Assessment and Mitigation Engine (RAME)

4.1.1.4.1 Short Description

The Risk Assessment and Mitigation Engine is the technical component that complement the
Security Policy Manager for the visualisation of the threats and the corresponding risks. The
RAME is based on OLISTIC. More specifically, OLISTIC is UBITECH’s Risk Assessment tool
which can support the security officer in getting an overview of the security status of the
factory, and more specifically, of the production lines and business processes of interest.
Overall, RAME enables the risk management and the identification and visualization of risks
through comprehensive and reactive visualization, while it provides the means to the security
officer to manage the life cycle of mitigation actions that helps to eliminate or control risk
events that have been detected by the monitoring mechanisms of STAR.

Dissemination level: PU -Public page 38

gISTAR N
D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

The interested reader can refer to D3.6 where the final version of the RAME tool is provided.
D3.6 concluded the technical work and the developments actions of WP3 tools, including
RAME. In the D3.6, the reader can have a comprehensive report on the new APIs that enable
the integration of RAME in the overall architecture of STAR.

4.1.1.4.2 Relation with the Reference Architecture
OLISTIC contributes to the flow of the AI Security and Data protection layer, as the component
that receives the security incidents that are being detected by the Security Policy Manager, as
a result of policy violations, and offers to the security officer an interactive dashboard in order
to understand the security posture of the manufacturing environment, considering the existing
vulnerabilities and weak points of systems.

4.1.1.4.3 Dependencies

e Major libraries: The component is a Quarkus-based application and currently its major
dependency is Java SE JDK 11. In addition, the backend application is based on a
proprietary application stack built by UBITECH. For fulfilling the purpose of internal
storage and event management, OLISTIC uses also PostgreSQL (with pgAdmin), ELK
stack (Elastic, Logstash, Kibana), Mongo DB and MinIO.

e Environment: The tool comes packaged as a docker container to be platform
independent.

e Components: The RAME comes with PostgreSQL (with pgAdmin), ELK stack (Elastic,
Logstash, Kibana), Mongo DB and MinlO integrated in order to be able to handle inputs
and outputs and store the generated events. interoperable and unified manner.

4.1.1.4.4 Availability
This is a proprietary component. UBITECH is responsible to manage the deployment of the
tool on its premises.

4.1.1.4.5 Installation/Deployment guidelines
For the first ever execution through console one must navigate to the location of the .yml file
and type the command:

docker-compose up -d

4.1.1.4.5.1 This first execution shall delay a little because it pulls pre-built images from online
repositories (e.qg. Docker Hub) Verification
To verify that everything is well, one may type:

docker ps

The main services of the application are A) The back-end stack of UBITECH, B) PostgreSQL
C) pgAdmin, D) ELK stack (Elastic, Logstash, Kibana), E) Mongo DB and F) MinIO.

To open their logs, one may type: docker logs -f <container name>. To exit the log type
Ctr/+C.

4.1.1.4.6 Documentation
As aforementioned, the RAME works in synergy with the security policy manager of STAR.
More specifically, the latter detects security incidents against the monitored environment and
generates attack events which are sent to the RAME. Then, RAME undertakes the task of
performing the risk assessment and visualizing the risk and the offensive events to the security
officer. After performing the risk assessment, the security administrator can check a

Dissemination level: PU -Public page 39

G3STAR

H2020 Contract No. 956573

D6.4 - Integrated STAR Platform-Final version
Final v1.0, 16/11/2023

comprehensive report in the tool’s dashboard reflecting the security posture of the monitored

production line.

4.1.1.4.7 Test Cases

Test ID

RAME-01

Title

Insertion of software and hardware assets into the
RAME dashboard.

Pre-Requisite

e The administrator has the knowledge on the
assets taking part in the production lines of a
factory

e The administrator has identified the
relationship connecting the assets together

Expected Outcome

A graph-based representation of the environment
is generated

Actions Expected Result Result Comment
The administrator adds the assets |e A list of assets is [A graph-
through a structured and well-defined created. based
data entry process. e The backend | representa
databases store the | tion of the
provided environme
information nt is
generated
Test ID RAME-02
Creation of an attack scenario denoting the
Title presence of an abuse case and the assessed

environment

Pre-Requisite

e The SPM triggers the APIs of RAME to inform
the latter about the detection of an abuse
case.

e The database of RAME has already stored
abuse cases that have been defined by the
administrator.

Expected Outcome

A new attack scenario entry is generated in the
risk assessment dashboard

Actions Expected Result Result Comment
The SPM identifies/detects an abuse | ¢ A new attack | A risk level
case and triggers the RAME API. scenario is | is

generated denoting | associated

Dissemination level: PU -Public

Page 40

D6.4 - Integrated STAR Platform-Final version
H2020 Contract No. 956573 Final v1.0, 16/11/2023

the presence of an | with the

abuse case. assets that
e The risk | faced the

assessment can be | abuse

triggered in order | case.

to derive the risk

level of the event.

4.1.1.5 Security Policies Manager (SPM) - Security Policies Repository (SPR)

4.1.1.5.1 Short Description
SSPM is a tool to be used by the factory personnel, in particular security/IT officers, to
configure security policies according to specific business and security requirements. The main
purpose of the SSPM is to detect poisoning and evasion attacks and report the related risk to
the Risk Assessment module OLISTIC, to generate alerts.

SSPM integrates the Cyber-Defence mechanism of the Star Blockchain infrastructure, Data
Provenance & Traceability, RMS, and Al Cyber-Defence module.

4.1.1.5.2 Relation with the Reference Architecture
The SSPM acts as a middleman, as it aggregates the inputs received from the RMS and the
Al Cyber-Defence Module, evaluates the received information based on security policies
defined by the security officer, and interacts with OLISTIC to create and assess risk scenarios.
The SSPM is implemented as a Python application, with a user interface and backend that
exploits OPA?°, an open-source, general-purpose policy engine that unifies policy enforcement
across the stack, as an external service for policies evaluation.

Star Security Policy Manager

OPA Server

Runtime —
Monitoring
System 5

— Kafka SSPM OLISTIC
Consumer Backend Backend

Al Cyber I
Defence C—
SSPM GUI - OLISTIC
MySql : - -
Policy Editor Frontend
e ——

Y

Figure 14: SSPM high level architecture
Figure 14 depicts a scheme of the SSPM architecture, which is composed of 5 modules:

« Kafka Consumer: it reads form the specific topics published by the RMS and AICD
on the Data Bus and passes the received messages to the SSPM backend;

« OPA Server: the policy engine used to evaluate the received inputs against the

29 https://www.openpolicyagent.org/

Dissemination level: PU -Public Page 41

https://www.openpolicyagent.org/

A
GISTAR -
D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

policies defined by the security officer;
« SSPM database: it stores security policies for persistence and SSPM configuration;

« SSPM backend: it manages inputs from the RMS and AICD components, interacts
with OPA for policies evaluation and calls OLISTIC APIs based on the evaluation
results;

 SSPM GUI: allows the security officer to create and update policies, and to configure
the attack scenario to be created in OLISTIC when a policy has been violated.

More detailed information on SSPM can be found in deliverable D3.6.

SSPM supports the logic for multiple types of policies, evaluating the input received through
the Kafka queue from the RMS and the Al Cyber-Defence Star’s components. These policies
can be applied to the following scenarios:

» Poisoning attack detection;

» System CPU workload detection;

» Heavy traffic or other probe’s data that can signal a suspicious behaviour detection;

« Evasion attacks detection.

4.1.1.5.3 Dependencies

e Major libraries — the SSPM is developed as a Python application, the frontend
component uses the Flask Framework, whereas the backend exploits the kafka-python
library. SSPM uses a MySQL database and peewee as an ORM.

e Environment - 2vCPU, 4GB RAM, 40GB disk space

« Components — SSPM backend, SSPM user interface to define and manage security
policies, OPA, rule’s storage.

e Output - interaction with OLISTIC through its APIs.

4.1.1.5.4 Availability
The SPPM is hosted on GFT server, and the User Interface is available through OLISTIC.

4.1.1.5.5 Installation/Deployment guidelines
The application is not contained within a single Docker image but is instead deployed as a
Software as a Service (SAAS). In cases where installation on an external platform is required,
it is possible to create a standalone Docker image. Currently, however, the solution is provided
as a SAAS and is installed on a GFT server. It is accessible to OLISTIC and, therefore, to the
STAR platform.

4.1.1.5.6 Documentation
Here below a short report about the availability of components data:

e API doc (e.g., swagger availability) -> not applicable

o Description of the input’s outputs of the components -> available and described in
sub-paragraph 4.1.1.5.7

o High level API description -> not applicable

Dissemination level: PU -Public page 42

GISTAR

H2020 Contract No. 956573

4.1.1.5.7 Test Cases

D6.4 - Integrated STAR Platform-Final version

Final v1.0, 16/11/2023

Test ID

SDC-01

Title

Attack evaluation

Pre-Requisite

Kafka queue from RMS (through Data Bus) and Al
Cyber-Defence Module

Expected Outcome

OLISTIC APIs are triggered to alert the security officer
about the possible threat.

Actions

Expected Result

Result

Comment

The security officer can access SSPM
interface and define security policies

The rules are saved
and uploaded to OPA

The rules are saved
and uploaded to OPA

In the SSPM the security officer can
create templates attack scenario

The templates attack
scenarios are saved

The templates attack
scenarios are saved

The security officer can link a rule to
an attack scenario that must be
created in OLISTIC if the rule is
violated

The association is
saved.

The association is
saved

SSPM receives inputs from RMS and
XAI Cyber-Defence module and
validates the data against the
defined security rules. SSPM
communicates the existence of a
threat to OLISTIC by triggering its
APIs

The data is correctly

evaluated, and
threats are
identified based on
defined security
policies.

An attack scenario
is created

accordingly to the
association defined

by the security
officer for the
specific identified
threat.

A risk assessment is
created and run in

OISTIC.

The data is correctly

evaluated, and
threats are
identified based on
defined security
policies.

An attack scenario
is created

accordingly to the
association defined

by the security
officer for the
specific identified
threat.

A risk assessment is
created and run in

OISTIC

4.1.2 Use Cases

The purpose of this section is to be used as a reference on how the different components
from WP3 explained above are going to be used within the context of WP6 and are
prepared/tested in this task/deliverable. The table contains the components from WP3 that
are planned to be utilised in the different pilots.

Use Case ID | Use Case title Involved Component(s) Short Description
PCL UC2 Al Cyber-Defence | ¢ Runtime Monitoring | The WP3 tools
and decentralized System ensure the reliability
reliability for of the production
Dissemination level: PU -Public

Page 43

%Q STAR

H2020 Contract No. 956573

D6.4 - Integrated STAR Platform-Final version

Final v1.0, 16/11/2023

industrial data Distributed Ledger | line and the integrity
Services for Data | of the visual quality
Reliability inspection system
Al Cyber-Defence | against Al
Strategies (ACDS) adversarial attacks.
Risk Assessment and
Mitigation Engine (RAME)
Security Policies Manager
(SPM), Security Policies
Repository (SPR)

IBER Pilot #4 | Agile Production Runtime Monitoring | The WP3 tools
Management System ensure the reliability
System Data Distributed Ledger | of the production
Integrity and Services for Data | line and the integrity
Reliability Reliability of the visual quality

Al Cyber-Defence | inspection system
Strategies (ACDS) against Al
Risk Assessment and | adversarial attacks.
Mitigation Engine (RAME)

Security Policies Manager

(SPM), Security Policies

Repository (SPR)

DKFI UC3 Robot Runtime Monitoring | The WP3 tools
Reconfiguration System ensure the reliability
based on the Distributed Ledger | of Robotino’s
Dynamic Layout Services for Data | behavior by

Reliability collecting, analyzing

Risk Assessment and | and validating

Mitigation Engine (RAME) | crucial operational

Security Policies Manager | data for the sake of

(SPM), Security Policies | identifying abnormal

Repository (SPR) behaviors or abuse
cases that may alert
the expected
behavior of the
Robotino.

4.1.3 Inter WP3 integration and communication

WP3 integration relies on the APIs which have been developed by each WP3 tool in the context
of the development actions of WP3. These APIs are used for enabling the inter WP3 integration
and communication. In this section we are not, referring to the internal APIs that enable the
operation of each independent tool with its internal sub-components, but we refer on how the
WP3 tools communicate among each other on the WP3-level basis.

Dissemination level: PU -Public

Page 44

gISTAR

H2020 Contract No. 956573

D6.4 - Integrated STAR Platform-Final version
Final v1.0, 16/11/2023

Distributed Ledger Services for Data Reliability
Blockchain API

STAR Security Policies
Manager

Probe —_— Shes

. beats Configurati

Data Source/Analytics ey
Configuration Metadata T Preprocessed Preprocessed A System/Probe
Data Data ory Configurations
sm;m; . B HIStorical Data | e m m = m m m o g 4 Iconﬁgs, Rules
Indexing LS c Rules + System/Probe Config
Stor + Mitigation Actions
ini
i

1 I Raw Data
(Observations)

i FACTORY

Risks & Alerts SECURITY

Visualization OFFICER
—_—

XAI Features &
Importance Scores

Figure 15: WP3 architecture and designed APIs

Thus, as can be seen in Figure 15, the purple boxes refer to the designed APIs of each
component which have been designed in order to materialize all the information flows that
the Security and Data Governance Layer of STAR requires in order to meet its functional
objectives. A short description of the APIs is given in the following table with appropriate
references to the technical deliverables of the components.

API Tool exposing the

API

Description Tools using the API

Al Cyber-Defence API
(See D3.4, Section

This API is used for
posting images to the

AI Cyber-Defence.

Tools of the pilot
partners that need

(See D3.6, Section
3.3)

communications
channel through which

all real time data is
routed. Platform
components may

subscribe to the data
bus to receive data of
specific interest to
them. The Data Bus is
based on KAFKA,
materializing a
Publish/Subscribe

component for all
WP3 tools. It is
deployed as part of
the RMS system.

2.4) Al Cyber-Defence to verify that the
Engine in order to images being
trigger the processed in the
Discriminator to infer context of the
whether the posted manufacturing
image is an adversarial process are not a
example or not. This is product of an
the main endpoint adversarial
triggered from the attempt.
pilot's environment in
order to stream data to
the AI Cyber-Defence
tool in parallel to the
production process.

KAFKA (Data Bus) Data Bus is a|Used a «central|e AI Cyber-

Defence (Pub)
e Security Policy
Manager (Sub)
e Runtime
Monitoring
System (Pub)
e Tools of pilot
partners (Pub)

Dissemination level: PU -Public

Page 45

@ISTAR

D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573

Final v1.0, 16/11/2023

communication
channel.

RMS or Pilot Specific
APIs
(See D3.6, Section 3)

This API refers to the
APIs used for
connecting the pilot
sites with the WP3 tools
pipeline, and more
specifically with the
Runtime Monitoring
System. Depending on
the use case, the pilot
partners may take
advantage of the APIs
exposed by the RMS
tool in order to push
data to the WP3
pipeline, or the RMS
tool takes advantage of
APIs exposed by the
systems of the partners
in order to consume
vital information.

Depending on the
use case, the APIs
is exposed by the
RMS tool or we rely
on APIs designed
by the use case
partners

e RMS

e Systems of the
use case
partners

BlockChain API
(see D3.2
3.3.1)

section

The STAR blockchain
infrastructure exposes
an API for
persisting/retrieving
the AI algorithms
configurations
metadata which can
describe an algorithm
type along with its
various instantiation
configurations across
time by using the
Analytics Engine
Configuration (AEC)
service (see D3.2
section 3.3.1).
Information about the
exposed API, data
models and usage can
be found in section
4.2.3 of D3.2

STAR Blockchain
Infrastructure

e Any tool that
needs to
validate its
configuration
(e.g., the AI
Cyber-Defence
is using this
API)

OLISTIC API
(see D3.6,
4.3.4)

Section

UBITECH’s technical
team released a
complete

documentation of the
APIs of the tool in order
to enable full
integration with other
STAR tools that may

Risk Assessment
and Mitigation
Engine, based on
UBITECH's
OLISTIC risk
assessment tool.

Security
Manager

Policy

Dissemination level: PU -Public

Page 46

%QSTA HQ D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

need to interact with
the Risk Assessment
and Mitigation Engine
of STAR. The APIs
enable the exchange of
information that refer
to the identification of
abuse cases, as a result
of the detection
processes of WP3 tools,
aiming to the
visualization of the
events to the RAME
dashboard

Leveraging these APIs, each module can effortlessly establish connections with the other
components in the WP3 architecture. The main integration currently is completed. Other
interactions can be easily implemented if needed thanks to the APIs exposed by the tools.

4.2 Safe, Transparent and Reliable Human-Robot Collaboration
4.2.1 Components

4.2.1.1 Simulated Reality (SR)

4.2.1.1.1 Short Description
The scope of the Simulated Reality component is to assist in the Automated Quality Inspection
use-case of the project where it generates simulated images to balance defect datasets that
suffer from skewed class data. Additionally, it is also intended to make the quality inspection
algorithms more robust by leveraging highly generalizable GAN architectures to generate out-
of-distribution images that will help visual classifiers recognize novel inputs.

4.2.1.1.2 Relation with the Reference Architecture
Simulated reality aims to support components in the context of the Trusted Human-Al
interactions pillar of the reference architecture. In its current form, it interacts with the ML
Algorithms of the STAR Machine Learning and Analytics Platform and with Human-AI
interaction components such as Active Learning, by providing them with synthetic data. The
goal is for the simulated reality component to serve as a loosely coupled utility that can
augment a ML algorithm’s training data on demand.

4.2.1.1.3 Dependencies
e Major libraries: The component was built in python, currently its major dependencies
include: python >= 3.7, tensorflow >= 2.6.4, keras >= 2.6.0, torch >= 1.11.0

e Environment: Since the SR component is intended to serve the ML Algorithms at
training time it is delivered in the form of long-running scripts/batch jobs, currently
open-sourced in the form of Jupyter notebooks. These notebooks can be run on
demand on a cluster with Jupyter installed or, alternatively, they can be converted to
.py files and run as python scripts. Computationally heavy tasks such as GAN training
and fine-tuning require access to a GPU.

Dissemination level: PU -Public page 47

%}ST“ N 2 D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

e (Sub-)Components: Two batch jobs (as Jupyter notebooks) for training data
generators, one for rebalancing the training data and the second for generating out-
of-distribution defects.

4.2.1.1.4 Availability
The open-sourced Jupyter notebooks can be found under two GitHub repositories:

https://github.com/tspyrosk/oversampling-defect-recognition

https://github.com/tspyrosk/osr-data-augmentation

The first repository corresponds to the data augmentation algorithm aimed at balancing an
input dataset and the second aimed at making the algorithm robust to novel inputs.

4.2.1.1.5 Installation/Deployment guidelines
The notebooks can be run on a cluster with Jupyter installed or on a local installation. They
can also be easily converted to .py files through Jupyter and run as python batch jobs/scripts.
For better performance they need access to a GPU (NVidia K80 GPU was used for the
evaluation).

4.2.1.1.6 Documentation
Short Documentation for each notebook can be found in the corresponding repository
README.md files.

4.2.1.1.7 Test Cases
Test ID SR-01

Generation of Synthetic Images for Visual Quality,

[Inspection

Access to original training images and potentially]

Pre-Requisite required pre-trained models

Generation of images that are visually similar to the
Expected Outcome originals (as judged through human perception,
perceptual loss, FID etc.)

Actions Expected Result Result Comment

A STAR ML classifier requests [The requested data is [The final
synthetic data for balancing its input [generated and savedin @ugmented

dataset (e.g., shaver shell prints) @ specific location that |dataset
should be accessible to jand a
the requesting [classifier
component trained on
it
Test ID SR-02

Generation of Novel/OOD defects for Visual Quality

ULEs Inspection

Dissemination level: PU -Public Page 48

https://github.com/tspyrosk/oversampling-defect-recognition
https://github.com/tspyrosk/osr-data-augmentation

$ISTAR e
D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Access to original training images and potentially

Pre-Requisite required pre-trained models

Generation of images that represent plausible
Expected Outcome defects but lie outside of the training classes’
distributions

Actions Expected Result Result Comment

A STAR ML classifier requests | The requested data The final
synthetic data to improve its is generated and augmented

robustness (e.g., shaver shell saved in a specific dataset

prints) location that should and a
be accessible to the classifier
requesting trained on
component it

4.2.1.2 Active Learning (AL)

4.2.1.2.1 Short Description
The active learning module implements multiple active learning strategies to assist the
machine learning models in learning from the most meaningful data and avoid devoting time
to label data instances that would eventually provide little or no performance enhancement to
the machine learning model at hand.

4.2.1.2.2 Relation with the Reference Architecture
Active Learning aims to support components in the context of the Trusted Human-AIl
interactions pillar of the reference architecture. In its current form, it may interact with the
machine learning algorithms, and requires selecting data (natural or synthetic - the synthetic
one generated from the Simulated Reality.

4.2.1.2.3 Dependencies

Major libraries: The AL component is built in python, currently its major dependencies
include: python >= 3.7, modAL*’, scikit-learn >= 0.18, FastAPI.

Environment: The active learning component is envisioned to be packaged as a Docker
container to be platform independent and make management of python and OS dependencies
easier and more flexible. The Docker instance will be running some Linux distro. The
application has not been dockerized yet.

Components: The Active Learning module has a dependency on the MongoDB to store data
that is relevant to the service operation.

4.2.1.2.4 Availability
The code has been made available in a project-specific repository (https://github.com/star-

eu/module-active-learning). The Docker images are yet to be made available in the artefact
store.

30 https://modal-python.readthedocs.io/en/latest/

Dissemination level: PU -Public Page 49

https://github.com/star-eu/module-active-learning
https://github.com/star-eu/module-active-learning

G3STAR

H2020 Contract No. 956573

D6.4 - Integrated STAR Platform-Final version
Final v1.0, 16/11/2023

4.2.1.2.5 Installation/Deployment guidelines
The installation and deployment guidelines have been provided at the README.md file at the

root of the project-specific repository.

4.2.1.2.6 Documentation

The REST API documentation is provided as a Swagger REST API endpoint. The REST API
documentation can be accessed at the following endpoint: http://[ip]:[port]/docs

4.2.1.2.7 Test Cases

Test ID

AL-01

Title

Add feature vector data

Pre-Requisite

e A dataset exists with some labeled data

e A supervised machine learning model exists,
trained on the abovementioned dataset

e A feature vector has been assembled.

Expected Outcome

A request response indicating whether the
operation was successful or not.

Actions Expected Result Result | Comment
The user sends an HTTP GET request to | The user receives an | The
MODEL_REPOSITORY_BASE_URL/ HTTP response with a | feature
/module-active-learning/feature-vectors. | 200 status code and a | vector
JSON exposing the ID | was
assigned to such | success
feature vector. fully
register
ed.
Test ID AL-02
Title Add model prediction for a particular feature

vector

Pre-Requisite

e A supervised machine learning model exists,
trained on a particular dataset and has been
registered in the model repository

e A feature vector has been registered.

e Predictions for the given feature vector has
been created with the abovementioned
model

Expected Outcome

A request response indicating whether the
operation was successful or not.

Actions Expected Result Result Comment
The user sends an HTTP GET request to | The user receives an | The
MODEL_REPOSITORY_BASE_URL/ HTTP response with a | model
/module-active-learning/model- 200 status code and a | predictio
predictions JSON informing the [ns for

feature vector ID, the | this

model ID and the | particula

predictions assigned to | r feature

Dissemination level: PU -Public

Page 50

G3STAR

H2020 Contract No. 956573

D6.4 - Integrated STAR Platform-Final version
Final v1.0, 16/11/2023

the feature vector in | vector
the scope of this | have
particular request. been
successf
ully
registere
d.
Test ID AL-03
Get top N unlabeled feature vectors given a
Title particular machine learning model and active

learning strategy.

Pre-Requisite

e A supervised machine learning model
exists, trained on a particular dataset and

has been registered in the model
repository

e A set of feature vector has been
registered.

e Predictions for the given feature vector has
been created and registered with the
abovementioned model and the
abovementioned feature vectors

e The amount of unlabelled feature vectors
to be retrieved has been specified

Expected Outcome

A request response indicating whether the
operation was successful or not.

Actions Expected Result Result | Comment

The user sends an HTTP GET request to | The user receives an | The

MODEL_REPOSITORY_BASE_URL/ HTTP response with a | unlabel

/module-active-learning/model- 200 status code and a | ed

predictions JSON informing feature | feature
vector ID, the dataset | vectors
ID, the feature vector | have
(list of values), and | been
feature vector label | success
(value should be -1, | fully
indicating no label has | retrieve
been assigned so far). | d.

Test ID AL-04

Title Provide label for feature vector.

Pre-Requisite

e A supervised machine learning model
exists, trained on a particular dataset and

has been registered in the model
repository

e A set of feature vector has been
registered.

Dissemination level: PU -Public

Page 51

%} o D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

e Predictions for the given feature vector has
been created and registered with the
abovementioned model and the
abovementioned feature vectors

e An unlabelled feature vector has been
retrieved for annotation

A request response indicating whether the
operation was successful or not.

Expected Outcome

Actions Expected Result Result [Comment
The user sends an HTTP GET request to | The user receives an | The
MODEL_REPOSITORY_BASE_URL/ HTTP response with a | unlab
/module-active-learning/feature- 200 status code and a | eled
vectors/{id}/{label} JSON informing feature | featur

vector ID, the dataset | e

ID, the feature vector | vector
(list of values), and | has
feature vector label | been
(value should be the | succe
one provided by the | ssfully
user). updat
ed
with
the
label.

4.2.1.3 Production Processes Knowledge Base (PPKB)

4.2.1.3.1 Short Description

PPKB is a knowledge base that is optional to use. It can be used to store meaningful data
related to the manufacturing environment. In particular, two demo applications have been
developed: (i) an application to register information related to a demand forecasting use case
and recommendations provided based on knowledge related to the client location and
information related to logistics (e.g., estimated transport delivery time and costs), and (ii) an
application to retrieve information on how users consider class activation maps and anomaly
maps (obtained from explainable artificial intelligence and unsupervised machine learning
methods, respectively) should be recoloured.

4.2.1.3.2 Relation with the Reference Architecture
The PPKB is an optional component that has no strong requirements on the interactions with
other components. The relation to specific components is based on particular use cases and
desired data to be collected. Please notice, that the knowledge base is a set of collected
knowledge. Therefore, the applications used to generate it have to support a particular use
case objective and may not relate to the reference architecture to achieve so.

Dissemination level: PU -Public page 52

%} o D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

4.2.1.3.3 Dependencies
Major libraries: The PPKB component is built in python, currently its major dependencies
include: python >= 3.7, and owlready23!.

Environment: The PPKB has been generated and the knowledge gathered in (ii) has been
used to generate predictive machine learning models. The knowledge base itself has been
recorded in memory, and the collected knowledge has been exported for experiments
performed with (ii).

4.2.1.3.4 Availability
The knowledge bases will not be published.

4.2.1.3.5 Installation/Deployment guidelines
No installation guidelines are provided, given only proof-of-concept applications for the
knowledge-base generation have been implemented and are not released publicly.

4.2.1.3.6 Documentation
No documentation is provided, given only proof-of-concept applications for the knowledge-
base generation have been implemented and are not released publicly.

4.2.1.3.7 Test Cases
The following tests refer to the application (i) mentioned above.

Test ID PPKB-APP1-01
Records user provided feedback for particular
Title target entity (whose type can be forecast or
explanation).
Pre-Requisite No prerequisites are required for this case.

New instance of the feedback entity is created
and connected with the target entity the
feedback is provided about. New knowledge and
relationships are created in the knowledge base.
Actions Expected Result Result [Comment

The user sends an HTTP POST request to | The user receives an
MODEL_REPOSITORY_BASE_URL/record | HTTP response with a
_feedback that contains the information | 200 status code and a
about the target entity and content of the | JSON body with the ID
feedback as specified in the HTTP query | of the resource created

Expected Outcome

syntax. and other relevant
information.
Test ID PPKB-APP1-02

Retrieves a set of forecasts that meet the
specified criteria.
Pre-Requisite No prerequisites are required for this case.

Title

31 https://owlready2.readthedocs.io/

Dissemination level: PU -Public page 53

G3STAR

H2020 Contract No. 956573

D6.4 - Integrated STAR Platform-Final version
Final v1.0, 16/11/2023

Expected Outcome

Instances of forecasts and their IDs are
retrieved from the knowledge base.

Actions

Expected Result

Result

Comment

The user sends an HTTP GET request to
MODEL_REPOSITORY_BASE_URL/get_fo
recasts that contains the search criteria.
The search query should be specified in
the SPARQL
(https://www.w3.0rg/TR/sparqli1-
query/) language. Other parameters are
specified following the HTTP query
syntax.

The user receives an
HTTP response with a
200 status code and a
JSON body with the IDs
of the forecasts
together with other
requested fields, such
as number of items
forecasted, timestamp,
type of items, etc.

Test ID

PPKB-APP1-03

Title

Retrieves an explanation associated with the

given forecast.

Pre-Requisite

No prerequisites are required for this case.

Expected Outcome

Instances of explanations for the given forecast
are retrieved from the knowledge base.

Actions

Expected Result

Result

Comment

The user sends an HTTP GET request to
MODEL_REPOSITORY_BASE_URL/get_e
xplanations that contains the search
criteria.

The search query should be specified in
the SPARQL
(https://www.w3.0org/TR/sparqgl11-
query/) language. Other parameters are
specified following the HTTP query
syntax.

The user receives an
HTTP response with a
200 status code and a
JSON body with the IDs
of the explanations
together with other
requested fields, such
as type of explanation,
XAI technique used for
creating it, most
significant features (if
applicable), etc.

4.2.1.4 Natural Language Processing (NLP)

4.2.1.4.1 Short Description

NLP is an optional module that facilitates communication between the operators and the
machine, especially for web browser-based applications.

In our particular case, the functionality offered by this module is related to Speech-To-Text
(STT), Text-to-Speech (TTS) technologies and conversational agents. In this way, Uls that
require multimodal interaction can make use of these technologies to provide support for voice
communication.

It should be noted that the module has focused on evaluating the different alternatives
available for human-machine voice interaction (local, cloud, and mixed) and is not so much a

Dissemination level: PU -Public

Page 54

https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/

%aSTA IQ D6.4 - Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

packageable component as an example code and a proof-of-concept that web-based UI
components can implement in their respective modules.

It is also important to mention that the NLP module is not only focused on STT and TTS. The
term NLP covers a wide spectrum of technologies, within it is the part dedicated to Sentiment
Analysis or conversational agents and chatbots that we consider may be of interest to
understand and give context to the interaction.

4.2.1.4.2 Relation with the Reference Architecture
As mentioned above it is an optional component, the NLP is not necessary in all cases or pilots
and even in some cases it is not recommended or possible to use it (e.g., noisy environments
or environments where the operator cannot wear a headset for safety reasons).

In any case, it is possible to integrate it in any of the user interfaces that have interaction with
this user through browser (Since is part of the NLP solution, the one dealing with quick TTS
and STT has been developed in JavaScript).

The image below (Figure 16) shows the architecture of the component. The box indicated as
web-app represents the web applications of the STAR architecture with Voice interaction
needs or interest in Sentiment Analysis or Polarity Detection.

Client Web Browser

API - Server

compatible browser + »

_ incompatible browser

- » APl - Audio Cloud Service |

Figure 16: Architecture of the components for Nature Language Processing

The main route, if the application is browser-based, and if the browser used by the PC or
machine with which the operator is interacting supports it, is through the Web Speech API. In
some cases