

This document is part of a project that has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 956573. It is the property of the STAR consortium and shall not
be distributed or reproduced without the formal approval of the STAR Management Committee. The content of
this report reflects only the authors’ view. The European Commission is not responsible for any use that may be
made of the information it contains.

Project Acronym: STAR
Grant Agreement number: 956573 (H2020-ICT-2020-1 – Research and Innovation Action)

Project Full Title: Safe and Trusted Human Centric Artificial Intelligence in Future

Manufacturing Lines

Project Coordinator: Netcompany-Intrasoft

D6.4 – Integrated STAR Platform-Final version

Dissemination level PU -Public

Type of Document Report

Contractual date of delivery 30/06/2023

Deliverable Leader DFKI

Status - version, date Final v1.0, 16/11/2023

WP / Task responsible WP6

Keywords: Service platform, validation

Funded by the Horizon 2020

Framework Programme of the

European Union

DELIVERABLE

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 2

Executive Summary
This deliverable as the final version of the Integrated STAR Platform which supersedes the

previous versions, provides the activities and the progress that has been done by the task 6.2-

Service Platform Integration and Lab Validation (M5-M30).

Task 6.2“Service Platform Integration and Lab Validation”, led by DFKI is a collaboration

between pilot partners with other participants from WP3, WP4, and WP5 and the technology

providers (INTRA-LU, THA, JSI, QLE, UPRC, UBI, SUPSI). The relationship between the STAR

reference architecture and the integrated platform is addressed in this document. The

document explains the repository’s technologies/tools which are utilized in the STAR project

to ease the CI/CD and collaboration between different partners. Furthermore, the essential

information (e.g., description of the components, relation to the reference architecture,

documentation, installation guideline, dependencies, and test cases) about different

artifacts/software developed by technology providers who are coupled to this task and link

them to the testbeds’ scenarios is presented.

In the conclusive version, we delve deeper into the intricate integration of each WPs’

components utilized in the pilot scenarios. Additionally, the document provides a detailed

overview of the requirements, activities, and shared information that facilitated effective

communication among partners, aligning with the task specifications. Furthermore, a

comprehensive analysis of the communication processes and integration of WPs-level

components, essential for achieving the goals of the STAR ecosystem is presented.

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 3

Deliverable Leader: DFKI (Hooman Tavakoli)

Contributors: INTRA-LU, THA, JSI, QLE, UPRC, UBI, SUPSI

Reviewers: JSI, R2M

Approved by: INTRA

Document History

Version Date Contributor(s) Description

V0.1 23/06/2023 DFKI Initiate the Document

V0.2 02/08/2023 DFKI
Finalising the conclusion and supported

scenarios

V0.3 03/08/2023 DFKI, PCL
Updating the use cases and scenarios in

each section of components.

V0.4 28/08/2023 DFKI
New section for integration between WPs

initiated.

V0.6 02/11/2023 DFKI DFKI final review

V0.7 07/11/2023 DFKI
Updating based on the Reviewer's input

from R2M

V0.8 16/11/2023 DFKI
Finalising the document with remaining

comments from final review

V1.0 16/11/2023 INTRA
QA and creation of the final submitted

version

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 4

Table of Contents
EXECUTIVE SUMMARY ... 2

TABLE OF FIGURES ... 6

LIST OF TABLES .. 7

DEFINITIONS, ACRONYMS AND ABBREVIATIONS .. 8

1 INTRODUCTION .. 9

1.1 OVERVIEW AND PURPOSE ... 9
1.2 RELATIONSHIP TO OTHER DELIVERABLES .. 9
1.3 DELIVERABLE STRUCTURE ... 10

2 FROM REFERENCE ARCHITECTURE TO INTEGRATED PLATFORM 11

2.1 THE STAR REFERENCE ARCHITECTURE ... 12
2.2 WP LEVEL DEPLOYMENT/PHYSICAL DIAGRAMS TO BE USED FOR THE LAB VALIDATION 13
2.3 PHYSICAL VIEW OF THE STAR CYBERSECURITY MODULES .. 14
2.4 PHYSICAL VIEW OF THE STAR ACTIVE LEARNING AND XAI MODULES .. 15

2.4.1 Physical View of Active Learning Module ... 15
2.4.2 Physical View of the Explainable AI (XAI) Module .. 16
2.4.3 Physical Views of the Reinforcement Learning Modules .. 16
2.4.4 Physical View of Safety Zones Detection Module .. 16
2.4.5 Physical View of Simulated Reality Module .. 18

2.5 PHYSICAL VIEW OF THE STAR HUMAN CENTRIC DIGITAL TWIN MODULES 19

3 SOURCE CODE, REPOSITORY & TOOLS .. 20

3.1 TECHNOLOGIES AND TOOLS ... 20
3.2 VERSION CONTROL SYSTEM AND REPOSITORY: GIT AND GITHUB .. 21
3.3 CONTAINERIZATION .. 23

3.3.1 Docker ... 24
3.3.2 Dockerfile ... 24
3.3.3 Docker Compose.. 25
3.3.4 Docker Usage .. 25

3.4 CONTAINER REPOSITORY & REGISTRY MANAGEMENT .. 25
3.5 MANAGEMENT/MONITORING WITH PORTAINER .. 26

4 THE STAR COMPONENTS .. 28

4.1 SECURITY AND DATA GOVERNANCE .. 28
4.1.1 Components .. 28
4.1.2 Use Cases ... 43
4.1.3 Inter WP3 integration and communication .. 44

4.2 SAFE, TRANSPARENT AND RELIABLE HUMAN-ROBOT COLLABORATION .. 47
4.2.1 Components .. 47
4.2.2 Use Cases ... 60
4.2.3 Inter WP4 integration and communication .. 60

4.3 HUMAN CENTRED SIMULATION AND DIGITAL TWINS ... 61
4.3.1 Components .. 61
4.3.2 Use Cases ... 75
4.3.3 Inter WP5 Integration and Communication ... 76

5 TESTING, VALIDATION, AND INTEGRATION ROADMAP .. 78

5.1 LAB REQUIREMENTS, AND ENVIRONMENT ... 78

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 5

5.1.1 General Asset List .. 78
5.1.2 Hardware requirement ... 79

5.2 SUPPORTED SCENARIOS ... 79
5.2.1 Automation Tools... 80
5.2.2 Validation the Components ... 80
5.2.3 Evaluation the accuracy of the Architectures ... 80
5.2.4 The Process of Accessing the Data ... 80

5.3 INTEGRATION OF TECHNICAL COMPONENTS WITH THE STAR SECURE STORAGE. 80

6 CONCLUSION .. 83

REFERENCES .. 84

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 6

Table of Figures
FIGURE 1: HIGH LEVEL REFERENCE MODEL FOR THE FUNCTIONALITIES OF THE STAR PLATFORM. 12
FIGURE 2: STAR FUNCTIONAL MODULES AND LOGICAL VIEW OF THE ARCHITECTURE [STAR-D2.7] 13
FIGURE 3: DEPLOYMENT DIAGRAM FOR THE CYBERSECURITY MODULES OF THE STAR ARCHITECTURE (I.E., MODULES

DEVELOPED IN WP3)- CAPTURED FROM D2.7 ... 15
FIGURE 4: THE DEPLOYMENT DIAGRAM FOR AL SERVICE. ... 15
FIGURE 5: PHYSICAL VIEW OF THE STAR XAI COMPONENT/MODULES ... 16
FIGURE 6: PHYSICAL VIEW OF THE SAFETY ZONE DETECTION & FLEET OPTIMIZER MODULES............................. 17
FIGURE 7: PHYSICAL VIEW OF THE SAFETY ZONE DETECTION. ... 18
FIGURE 8: PHYSICAL VIEW FOR THE SIMULATED REALITY. .. 19
FIGURE 9: HUMAN DIGITAL TWIN CORE INFRASTRUCTURE DEPLOYMENT SHOWCASE 19
FIGURE 10: STAR-AI GITHUB PAGE .. 22
FIGURE 11: A COMPLETE GIT BRANCHING MODEL .. 23
FIGURE 12: AI CYBER-DEFENCE TOOL INTERNAL ARCHITECTURE... 34
FIGURE 13: CONSOLE OUTPUT OF DOCKER PS ... 35
FIGURE 14: SSPM HIGH LEVEL ARCHITECTURE .. 41
FIGURE 15: WP3 ARCHITECTURE AND DESIGNED APIS .. 45
FIGURE 16: ARCHITECTURE OF THE COMPONENTS FOR NATURE LANGUAGE PROCESSING 55
FIGURE 17: INTERACTION BETWEEN WP4 COMPONENTS. ... 61
FIGURE 18: SAFETY ZONE DETECTION & AMR FLEET OPTIMIZER PHYSICAL VIEW .. 62
FIGURE 19: DEPLOYMENT VIEW OF HDT COMPONENTS .. 69
FIGURE 20: WP5 MAIN INTEGRATIONS ... 77

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 7

List of Tables
TABLE 1: EDGE/CLOUD DEPLOYMENT CONSIDERATIONS FOR THE MAIN COMPONENTS OF THE STAR ARCHITECTURE FROM

D2.7 .. 13
TABLE 2: INDICATIVE OUTPUT OF AI CYBER-DEFENCE TOOL. ... 36

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 8

Definitions, Acronyms and Abbreviations
Acronym/

Abbreviation
Title

API Application Programming Interface

CE Community Edition

CLI Command Line Input

CRUD Create Read Update Delete

DLSDR Distributed Ledger Services for Data Reliability

DoA Description of Action

DSL Domain-Specific Language

EAE Edge Analytics Engine

GUI Graphical User Interface

JSON JavaScript Object Notation

JVM Java Virtual Machine

MVP Minimum Viable Product

OEM Original Equipment Manufacturer

P2P Peer-to-Peer

RL Reinforcement Learning

RMS Runtime Monitoring System

SDK Software Development Kit

SLA Service Level Agreement

URI Universal Resource Identifier

URL Universal Resource Locator

UUID Universally Unique Identifier

WP Work Package

XSD XML Schema Definition

DB Database

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 9

1 Introduction

1.1 Overview and Purpose
The AI approaches are becoming more favoured approaches in the research and industrial

environment. One vital aspect of employing AI systems is considering the reliability and safety

of the AI systems, and it becomes more demanding when the system is planned to be utilized

in the industrial environment. The main goal of the STAR project is to research, implement

validate and demonstrate the trusted AI technologies related to the production lines and

manufactory’s scenarios. The STAR project provides a holistic approach to tackle a wide range

of trustworthy approaches from data reliability to cybersecurity and AI system explainability.

The STAR project designs and implements multiple prototype systems including systems for

data provenance and traceability, cyber-defence against some of the most prominent attacks

that target AI systems, Explainable AI (XAI) algorithms, human-centric AI-based systems such

as human-centric digital twins, systems for the trusted and safe operation of mobile robots in

production lines, human-robot collaboration systems, simulated reality systems for effective

cobots, to name but a few.

The STAR project’s intentions are applied in the industrial environment and need to be proven

and tested in different testbeds with different scenarios. WP6 aims to integrate, validate, and

evaluate the STAR goals in the various testbeds with different use cases. Task 6.2 ”Service

Platform Integration and Lab Validation”, in this work package which starts from M5 and

continues till M30 of the project’s lifespan, focuses on the integration of the project technical

development and prototyping in the STAR platform for secure and safe AI in the

manufacturing area.

In this task, the main purpose is to focus on the integration of the technology providers’

components into the STAR platform. Considering that the vast amount of the components in

the STAR projects are software or middleware, it is essential to utilize the modern approaches

for CI/CD (Continuous Integration / Continuous Deployment), based on the DevOps principles

and tools. Furthermore, in this task, we consider the approaches which facilitate the packaging

and distribution of the software/ middleware components, like leveraging the containerization

approaches (e.g., Docker images).

The integration process in this task is driven by the reference architecture of the STAR project.

Moreover, the interface between different components of the platform from different

technology providers is one of the key points fulfilled within this task. Finally, for the validation

phase, we considered that the integrated platform and its components, and functionalities are

validated in different use cases from different pilots to identify and implement improvements

to the various part of the integrated platform.

1.2 Relationship to Other Deliverables
In this section, other deliverables related to the D6.4 are listed. In addition, we address why

various deliverables are related to this document.

D2.7- “STAR Reference Architecture and Blueprints”.

In the STAR reference architecture, we model the relationship between different technologies

which are categorized into three clusters that build the STAR AI platform. Since in this

deliverable, we focus on the test, validation, and integration of different STAR

components/technologies into the STAR platform, it is inevitable to have a wide perspective

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 10

on how these different technologies bind and communicate together. Moreover, for the

Physical diagram for the lab validation, which is addressed in section 2, we leverage this

deliverable.

D2.5- “Data Models and Data Collection”.

In the deliverable 6.4, we list different components and provide test cases related to the inter-

component and inter-WPs as the atomic test. For this reason, there is a crucial binding

between the data models and data collection and this deliverable.

D3.1 and D3.2 “Decentralized Reliability for Industrial Data and Distributed Analytics”.

The D3.1 and D3.2 are focusing on the project’s decentralized approach for provenance and

tracking of industrial data utilized in AI systems. The Distributed Ledger Services for Data

Reliability (DLSDR) (subsection 4.1.1.2) as a component for Security and Data Governance

(Section 4.1) majorly references to this deliverable.

1.3 Deliverable Structure
In this deliverable we report on:

• The reference architecture and link that to the integrated platform. Moreover, we
provide the WP-level deployment/physical diagram used for the lab validation.

• The repository initiated for the artifacts, software, and source codes from technology
providers.

• The components that are utilized in the STAR project to address the Pilots’ use cases.
These components are categorized into three domains: “Security and Data

Governance”, “Safe, Transparent and Reliable Human-Robot Collaboration”, and
“Human Cantered Simulation and Digital Twin”. We explain the different components
and their relation to the use cases. Furthermore, we establish the integration and

relationships among the components within the WPs across these three categories.
This approach ensures a comprehensive understanding of the interconnections and
relationships among various technologies.

• Ultimately, within this task, we have conducted a thorough list of activities
encompassing the testing, validation, and integration of diverse artifacts within the
integrated platform. This encompassed fulfilling lab requirements, initializing the

platform, and addressing supported scenarios pertinent to the task's objectives.
Additionally, we focus on integrating the components to encompass the entire STAR
ecosystem. This integration aids us in gaining a comprehensive perspective on the

interoperability requirements among different artifacts and pilots at the project level.

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 11

2 From reference architecture to integrated

platform
The STAR project is facilitated by a wide range of systems and functionalities. The project

takes a comprehensive approach that addresses multiple aspects of AI trustworthiness from

data reliability to the cybersecurity and explainability of AI systems. Consequently, the STAR

project designs and implements multiple prototype systems, systems for data provenance and

traceability, cyber-defence against some of the most prominent attacks that target AI systems,

Explainable AI (XAI) algorithms, human-centric AI-based systems such as human-centric

digital twins, systems for the trusted and safe operation of mobile robots in production lines,

human-robot collaboration systems, simulated reality systems for effective cobots and more.

Although each of the STAR-related prototype systems can be researched, implemented, and

tested independently, it is inevitable to have a holistic reference architecture that connects

them since most of them are intricately connected. For instance, the XAI systems can be used

to support the operation of cyber-defence strategies (e.g., by detecting abnormalities in their

operation), as well as the operation of simulated reality systems (e.g., through helping in the

production of reliable data to set up the simulated environment). In this context, STAR is not

limited to researching each of the above systems individually. It also explores ways and

methods that could boost the optimal interplay and integration of the above systems towards

a holistic and efficient approach to trusted AI in manufacturing.

For the reason of the optimal integration of the STAR AI systems, the STAR project also

researched the structuring principles that provide the optimal integration of the various AI

prototyping and documents the software architecture that reflect these structuring principles.

In this direction, the project introduced a reference architecture model that can support the

development, deployment, and operation of end-to-end integrated systems for trusted AI in

industrial environments. The model is characterized as “reference” as it is not limited to

supporting the integration and deployment of the STAR platform. It is also destined to serve

as a blueprint for a wider class of trusted AI systems i.e., helping integrators of AI solutions

to develop and deployed trusted AI in dynamic manufacturing environments.

The STAR reference architecture (STAR-RA) model considers the specifications and

functionalities of the various AI building blocks of the project’s solutions and provides a set of

fundamentals for their integration into trusted AI solutions. As previously discussed, the STAR

architecture model is aimed at being abstract and general to support the development of

trusted AI beyond the boundaries of the project. To this end, the model is developed based

on principles and concepts of existing reference architecture models for Industry 4.0, the

Industrial Internet of Things (IIOT), and Bigdata systems. Especially, existing models are

extended and/or customized to address the STAR project’s trusted AI vision. Hence, the STAR-

RA model aims to be usable and exploitable by the numerous manufacturers and AI/IIoT

solution providers for manufacturing environments, which can already be fitted to existing

reference architectures for Industry 4.0.

The development and research activities of the project, the specification of the reference

scenarios for trusted AI in manufacturing, the development of the various modules of the

STAR platform and solutions, the specification/evolution of Industry 4.0 and AI standards, as

well as the collection and management of data for training and developing AI systems have

direct influence and therefore have an essential impact on the development and validation of

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 12

the STAR architecture. Hence, the agile approach to specify, validate, and document the

STAR-RA is chosen. Especially, the STAR-RA is specified in two iterations. The first iteration

was driven by the project’s activities during the first semester of STAR’s lifetime, while in the

second phase, the STAR-RA incorporated inputs from the final versions of the STAR reference

scenarios and technologies specifications. Moreover, between the two iterations, the project

used the first version of the architecture to drive the development and integration of

technical/technological systems in WP3, WP4, WP5, and WP6. This enabled the project to

receive feedback from the actual, implementation, deployment, and use of the first version of

the architecture. Accordingly, the project used this feedback to fine-tune the specification of

the architecture. Consequently, there has been an inevitable bind between the reference

architecture of the STAR project and scenarios from testbeds and technology providers.

2.1 The STAR Reference Architecture
The major functionalities of the STAR platform can be clustered into three categories. Figure

1 illustrates the high-level reference model for the functionalities of the STAR platform. The

mentioned domains are as follows:

Figure 1: High Level Reference Model for the Functionalities of the STAR Platform.

Cyber Security Domain. This block contains functionalities that ensure the reliability and

security of industrial data and AI algorithms that are trained and tested based on them. The

functionalities of these domains support and reinforce the trustworthiness of the project’s

functions in the other two domains.

Human-Robot Collaboration Domain. Provides the functionalities to fulfil the trusted

collaboration between robots and workers in the industrial environment.

Safety Domain. Provides the safety of industrial operations containing the workers and/or

autonomous systems.

As depicted in Figure 1, the functionalities of the three mentioned domains depend on the XAI

and AI algorithms. The XAI plays a crucial role in the operation of the security platform by

supporting the defence strategies in the cybersecurity domain, data generation in a simulated

reality, and active learning functionalities in the human-robot collaboration as well as the

development of human digital twins in the safety domain.

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 13

Figure 2: STAR Functional Modules and Logical View of the Architecture [STAR-D2.7]

In Figure 2, the STAR functional modules, as well as the logical perspective of the architecture,

are presented. As illustrated in the image above, the STAR platform starts with receiving the

data from the factory environment and providing different types of services and functionalities

to the cyber-security teams of the factory and also to other factory stakeholders. (e.g.,

industrial engineers, plant managers, factory workers).

In Figure 2 different modules from each WPs and their relations to others are presented.

• For the WP3, Data and Algorithms Verification SC, and Security Policies Repository are
the focused modules.

• For the WP4, STAR XAI Models and Library, Simulated Reality, NLP Module, and
Feedback Module, and Active Learning are the target components.

• For the WP5, labeled with red color, we have Fatigue Monitoring System, human-
centered Digital Twin, RL systems and AMR Safety, and Human Model Images.

• AI Application GUI, STAR Machine Learning and Analytics Platform, Industry 4.0 AI
Applications, and Production Process Knowledge Base are the related modules to the

WP6.

2.2 WP level Deployment/Physical Diagrams to be used for the

Lab Validation
The physical deployment of the STAR platform mainly refers to the cloud/edge deployment

model. Based on a different feature of the operations (e.g., Datapoints availability, energy

efficiency, low latency-real-time performance, and privacy), they can be deployed in cloud or

edge servers.

The main components of the STAR architecture can have different physical deployment

choices. In Table 1, the major STAR components which are needed to be deployed as a part

of the lab validation and the different options for the physical deployments are illustrated.

Table 1: Edge/Cloud Deployment Considerations for the main components of the STAR architecture
from D2.7

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 14

Component Name Physical Deployment Choice

Data Probes / Data Connectors Cloud/Edge, specifically: Cloud: Monitoring Engine;

Edge: Data Collectors (Beats)

STAR Blockchain (DLT) Cloud

AI Cyber Defence Strategies Cloud

Risk Assessment and Mitigation

Engine (RAME)

Cloud

Security Policies Manager (SPM) Cloud/Edge, specifically: Cloud: Policy Management

Engine, Policy Validation; Edge: Policy enforcement,

Policy Validation

XAI Library Cloud/Edge

Simulated Reality Cloud/Edge

Active Learning (AL) Cloud

NLP Module (incl. TTS, STT,

Sentiment Analysis)

Cloud

Production Processes Knowledge

Base

Cloud

Feedback Module Cloud

The physical view in this task of test, validation, and integration of the lab environment

provides us a wide perspective and clear view of how different components at the WP level

require separate cloud application server(s). In the following, we describe different

components briefly. The details about this section can be reached through the D2.7.

2.3 Physical View of the STAR Cybersecurity Modules
Figure 3 illustrates the complete deployment diagram/physical view of the components from

WP3, which can be containerized in Docker images. In this figure, the number of the 7 VMs

(Application Server) for different components is presented. Moreover, the minimum

requirements for each component to be deployed are mentioned. This STAR security and data

governance for AI systems in manufacturing infrastructure consists of DLSDR infrastructure,

Runtime Monitoring System, Cyber-Defence Strategies, Policy Manager, and Risk Management

and Mitigation Engine components/artifacts.

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 15

Figure 3: Deployment Diagram for the Cybersecurity Modules of the STAR Architecture (i.e., modules
developed in WP3)- Captured from D2.7

2.4 Physical View of the STAR Active Learning and XAI Modules
The source code for the Active Learning and XAI modules is managed in private repositories.

The final version of the XAI service offers the Machine learning models functionalities through

the REST API.

2.4.1 Physical View of Active Learning Module

STAR project specifically utilizes the Supervised learning approach of the active learning

module. Figure 4 illustrates the integration between gateway services with some machine

learning models and their communication with AL services.

Figure 4: The Deployment Diagram for AL Service.

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 16

2.4.2 Physical View of the Explainable AI (XAI) Module

XAI for the STAR project is proposed to be deployed to a Kubernetes environment (Figure 5)

and can be deployed in a containerized microservice. Regarding the data management and

communication with other components of the platform Kafka queue, and Zookeeper, JDBC

and REST API connection is utilized.

Figure 5: Physical View of the STAR XAI Component/Modules

2.4.3 Physical Views of the Reinforcement Learning Modules
The RL module consists of two different modules from WP4, and WP5.

1. Safety Zone Detection Module

2. Simulated Reality Module

2.4.4 Physical View of Safety Zones Detection Module

The safe movement and collaboration between workers and Automotive Mobile Robot (AMR)

are based on two modules:

1. Safety Zone Detection.

2. AMR Fleet Optimizer.

The physical view of the two modules is depicted in Figure 6. Moreover, it is shown in this

diagram that the two modules are communicating to each other relying on the Human Centric

Digital Twin through an MQTT Broker. The main output of the safety zone detector is an

“average spatial heatmap” representing a probabilistic occupancy of the production lines

based on fixed RGB cameras deployed in the factory. This description represents the global

environment, including human and object location as occupancy cells. The results from

object/human detection and localisation allow to update the heatmap representation. Indeed,

these heatmaps are simplified and anonymized representations of the occupancy of the work

floor in real time. It serves to feed the reinforcement learning module. The Safety Zone

detection module publishes the position of the occupied cells and the AMR Fleet Optimizer

subscribes for this message and then forecasts Robotino trajectories in order to avoid potential

crowded areas.

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 17

Figure 6: Physical View of the Safety Zone Detection & Fleet Optimizer modules.

Figure 7 presents each subcomponent of the Physical view of the Safety Zones Detection

System. The systems start with exploiting videos from ceiling-mounted cameras in the testbed

environment as input and will deliver the spatial heatmaps (worker location and object

location) as results of the analytics. In the middle of the figure, the fusion 3D scene

component combines the two deep learning algorithms namely:

 1. The skeleton extraction to follow the human gesture and pose,

2. the detection and classification of unknown non-static objects in the scene.

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 18

Figure 7: Physical View of the Safety Zone Detection.

All these components are dockerized to facilitate the deployment.

2.4.5 Physical View of Simulated Reality Module
The Simulated Reality component utilizes different batch jobs to generate synthetic data. The

output of these batch jobs will be consumed by live services that will deliver synthetic data

upon request, potentially in a way that can also categorize the data as easy or difficult to

classify through the Confidence Assessment subcomponent. All subcomponents will need

access to a common data store or shared filesystem containing the Input Dataset and Auxiliary

Data needed including weights for pre-trained models (Figure 8). Their outputs will consist of

a trained generator like generator model from GAN that can produce synthetic data upon

request. These need to be accessible through the Data Serving services (e.g., through a

Shared File System). Data Serving should return synthetic data fitting a certain use-case

specification upon request together with a potential confidence assessment. The transferring

and communication can be done with the REST API.

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 19

Figure 8: Physical View for the Simulated Reality.

2.5 Physical View of the STAR Human Centric Digital Twin

Modules
The Human Digital Twin (HDT) and its components are deployed as cloud applications (Figure

9: Human Digital Twin Core Infrastructure deployment showcaseFigure 9). Specific instances

are deployed to support the different use cases of the project.

Figure 9: Human Digital Twin Core Infrastructure deployment showcase

The HDT Core Infrastructure is an extensible and flexible IIoT based platform supporting the

creation of customised data representations of production systems and their entities, including

humans. Thanks to its modular infrastructure with interchangeable components, which ease

the digital twin instantiation and ramp-up, the HDT is applied in two different STAR use-cases:

DFKI pilot supporting the integration AMR Fleet Optimizer and Safety Zone Detection; PHILIPS

pilot supporting data collection from wearable devices and quality control thought active

learning.

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 20

3 Source Code, Repository & Tools

3.1 Technologies and Tools
This section provides a list of code management, packaging and deployment tools, along with

their high-level description, that facilitate the STAR software development teams with the

integration and deployment and validation of the STAR solution. A summarization of the

technologies and software tools follows below:

• Hetzner1: The software components that comprise the STAR development platform
(i.e. artifact repository) have been deployed on virtual hosts, which are, in essence,

cloud servers instantiated on a public cloud provider, named Hetzner Cloud.

• Git2: A free and open-source distributed Version Control System (VCS). It is used for
tracking changes in any set of files, usually used for coordinating work among
programmers collaboratively developing source code during software development. It
has been designed to handle everything from small to very large projects with speed

and efficiency. A Git repository (or repo for short) contains all of the project files and
the entire revision history.

• GitHub3: A web-based open-source Git repository hosting service. It offers a graphical
interface with several built-in features, such as version control, issue tracking, code
review, wiki, etc. Multiple developers can concurrently create, merge and delete parts
of the code they are working on independently, at their local system before applying

the finalized changes to a shared GitHub repository.

• Docker4: A set of Platform-as-a-Service (PaaS) products that use OS-level
virtualization to deliver software in lightweight packages called containers. Docker can
package an application and its dependencies in a virtual container that can run
seamlessly on any Linux, Windows, or macOS computer. This enables the application

to run in a variety of locations, such as on-premises, in a public cloud, and/or in a
private cloud.

• Docker Daemon5: Services running on multiple development virtual servers for the
deployment of containerized services. Docker Daemon is a background process that
manages Docker images, containers, networks, and storage volumes. The Docker
Daemon constantly listens to Docker API requests and processes them.

• JFrog Container Registry6: An application that implements a private Docker
Registry in which one can store and distribute the Docker images of the projects’

artifacts. It is used to securely control where the images are being stored awaiting
containerization, thus integrating image storage and distribution tightly into the STAR
development workflow. For the needs of the STAR project, a self-hosted JFrog

Container Registry instance has been deployed to Hetzner Cloud.

• Portainer7: An open-source tool for managing container-based applications in various
virtualization environments. It can be used to set up and manage the environment,

1 Cloud provider’s official website: https://www.hetzner.com/cloud
2 Git official website: https://git-scm.com/
3 GitHub official website: https://github.com/
4 Docker official website: https://www.docker.com/
5 Docker overview on official website: https://docs.docker.com/get-started/overview/
6 JFrog Container Registry official website: https://jfrog.com/container-registry/
7 Portainer official website: https://www.portainer.io/

https://www.hetzner.com/cloud
https://git-scm.com/
https://github.com/
https://www.docker.com/
https://docs.docker.com/get-started/overview/
https://jfrog.com/container-registry/
https://www.portainer.io/

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 21

manage containers lifecycle, monitor application performance, triage problems, and
enable role-based access control. For the needs of the STAR project, a Portainer

instance has been deployed to Hetzner Cloud.

3.2 Version Control System and Repository: Git and GitHub
During collaborative software development projects, the source code is usually stored in

shared remote repositories, accessible by all team members with various permission levels.

Version control, also known as source control and revision control is the practice of tracking

and managing changes to code stored in such repositories. Consequently, Version Control

Systems (VCS) can be defined as software tools that help software teams manage changes to

source code over time. Their value is twofold: on the one hand, they keep track of every

modification to the code in a special kind of database, thus allowing reversion of the code to

previous states in case a breaking bug is introduced; on the other hand, by employing clever

branching strategies, they enable developers to simultaneously work collaboratively on the

same codebase, without cancelling one another's effort.

As mentioned in D2.7 [STAR-D2.7], the STAR component’s code management is based on

two popular open-source technologies, Git and GitHub8. Git serves as the Version Control

Systems (VCS), while GitHub is a powerful and intuitive Git repository hosting service. The

latter offers a web-based graphical interface with several built-in features. It allows the

creation of collaboratively owned and maintained code repositories, code branching and

merging, version control, issue tracking, code review, wikis, etc. Multiple developers can

concurrently create, merge and delete parts of the code they are working on independently

at their local system, before pushing the changes back to branches of the shared GitHub

repository. The instantiated STAR GitHub Organization can be found under the following URL:

https://github.com/star-eu (see Figure 10 below). Under this Organization, several

repositories and Teams for the STAR components and services have been created.

The private repositories GitHub STAR Organization host are accessible only to the project

partners developing each tool and, in addition, to INTRA for administration purposes.

Additionally, some of the repositories (i.e., XAI-Library9) which are offered as open source can

be accessed and downloaded by anyone but code can be committed only from the repository’s

maintainers. Each component repository should include a project with source code and scripts

for executing the testing and deployment pipelines. The minimal required files for such a

project are the following:

• Dockerfile: A text-based script of instructions that is used to create a container
image.

• README.md: A mark-up file with information on the module’s purpose and
deployment instructions.

8 https://github.com/
9 https://github.com/star-eu/xai-library

https://github.com/star-eu
https://github.com/
https://github.com/star-eu/xai-library

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 22

Figure 10: STAR-AI GitHub page

Well-structured Git repositories usually follow a specific branching model in order to guide the

developers on the commit methodology. A proposed branching model for STAR (or part of it)

has been introduced by [Driessen 10] and a complete version of which is shown in Figure 11

below.

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 23

Figure 11: A Complete Git branching model10

Note that the development of a specific branching strategy remains at the discretion of each

STAR component’s development team and is not restricted to a specific model.

3.3 Containerization
Containerization is the packaging of software code with just the operating system (OS)

libraries and dependencies required to run the code to create a single lightweight executable

- called a container - that runs consistently on any infrastructure. More portable and resource-

efficient than virtual machines (VMs), containers have become the de facto compute units of

modern cloud-native applications.

Containerization allows developers to create and deploy applications faster and more securely.

With traditional methods, code is developed in a specific computing environment which, when

transferred to a new location, often results in bugs and errors. For example, when a developer

transfers code from a desktop computer to a virtual machine (VM) or from a Linux to a

Windows operating system. Containerization eliminates this problem by bundling the

10 https://nvie.com/posts/a-successful-git-branching-model/

https://nvie.com/posts/a-successful-git-branching-model/

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 24

application code together with the related configuration files, libraries, and dependencies

required for it to run. This single package of software or «container» is abstracted away from

the host operating system, and hence, it stands alone and becomes portable - able to run

across any platform or cloud, free of issues.

3.3.1 Docker
As mentioned in D2.7 [STAR-D2.7] for the STAR software packaging we have considered

Docker11 images which is currently the dominant technology/methodology and is considered

a de facto. A Docker image is a file, comprised of multiple layers, used to execute code in a

Docker container. An image is essentially built from the instructions for a complete and

executable version of an application, which relies on the host OS kernel. Docker is an open

platform for developing, shipping, and running applications. With Docker, an infrastructure

can be managed in the same way applications are managed. Docker offers shipping, testing,

and deploying methodologies easily and quickly, where the time between writing code and

running it in production can be significantly reduced.

Docker provides the ability to package and run an application in a loosely isolated environment

called a container. The isolation and security allow you to run many containers simultaneously

on a given host. Containers are lightweight because they don’t need the extra load of a

hypervisor but run directly within the host machine’s kernel. This means you can run more

containers on a given hardware combination than if you were using virtual machines. You can

even run Docker containers within host machines that are actual virtual machines [Docker].

Docker images can be published in a shared repository, such as the Docker Registry12 or
DockerHub13, and through the docker pull command or through the docker-compose pull
functionality these images can be retrieved from the Docker registry and deployed together

via a single configuration file. Containerization thus provides OS level virtualization. This
means that multiple applications running in containers on a single host, access the same OS
kernel. Hence, it is faster and more lightweight than isolating applications using VMs.

Containers have an initial configuration which does not affect the configuration of other

containers, even though they share the same host OS. This eliminates errors due to

unexpected conflicts or missing dependencies, which are common when applications are

installed on a single host without isolation. In addition, in more demanding installations due

to increased load of the system, Docker is perfectly suitable to be configured with load

balancing mechanisms that can scale up the performance of the system.

3.3.2 Dockerfile

Every Docker container starts with a simple text file containing instructions for how to build

the Docker container image. This file, which is by convention named “DockerFile” without any

file extension, automates the process of Docker image creation. It is essentially a list

of command-line interface (CLI) instructions that Docker Engine will run in order to assemble

the image. Dockerfiles can be as complicated as needed; they might even contain multiple

parent Docker images, as well as some Build-Automation commands.

11 https://docs.docker.com/
12 Docker Registry official website: https://docs.docker.com/registry/ (accessed August 2021)
13 DockerHub official website: https://hub.docker.com/ (accessed August 2021)

https://docs.docker.com/
https://docs.docker.com/registry/
https://hub.docker.com/

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 25

Last but not least, repositories might also contain a “.dockerignore” file. Such files allow

developers to mention a list of files and/or directories which they might want to ignore while

building the image. This would definitely reduce the size of the image and also help to speed

up the Docker build process.

3.3.3 Docker Compose.
As mentioned in D2.7 [STAR-D2.7] Docker Compose is a tool for defining and running multi-

container Docker applications. It uses YAML files to configure the application's services and

performs the creation and start-up process of all the containers with a single command. The

“docker-compose.yml” file is used to define an application's services and includes

configuration options. In STAR as the preferred container runtime management method was

Docker Compose every component is accompanied by a “docker-compose.yml” file which

facilitates its installation. Additionally, different collections of interoperable components that

are used as solutions for the STAR use cases are provided as ready to install “docker-

compose.yml” files.

Information on how to edit a “docker-compose.yml” file can be found at Docker Docs [Docker]

and more specifically at the Get started with Docker Compose14.

3.3.4 Docker Usage
There are many tutorials to containerize an application or a system and offer it thru a

repository management service which span from beginners to more advanced ones depending

on the technologies used. An intermediate one that doesn’t focus on a specific technology and

provides the relevant aspects that are necessary to establish a well-defined contract between

Dev and Ops teams can be found in [Souza18], which provides a checklist on how to

“dockerize” any application. Specifically, the following steps are suggested:

• Choice of a base Image.

• Installation of the necessary packages.

• Addition of custom files.

• Definition of users that will run your container.

• Definition of the exposed ports.

• Definition of the entry point.

• Definition of the configuration method.

• Externalization of the data.

• Logs handling.

• Logs rotation and other append only files

3.4 Container Repository & Registry Management
A container registry is a directory where container images are stored so they may be pulled

and pushed. However, the physical places where images are kept are called repositories. Each

repository maintains a set of related images with the same name. A repository's images each

14 https://docs.docker.com/compose/gettingstarted/

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 26

reflect a distinct deployment of the same container. A specific image is identified by either its

tag or its own unique reference [Kisller21].

As mentioned in D2.7 [STAR-D2.7] for the STAR project, JFrog Container Registry has been

selected to be used to setup a secure private Docker Registry. The JFrog Container Registry

supports Docker registries and Generic repositories, allowing users to build, deploy and

manage container images while providing powerful features with fine-grained permission

control behind a sleek and easy-to-use UI. JFrog Container Registry imposes no limitations on

the number of Docker Registries one may apply. The STAR JFrog Container Registry services

can be accessed from:

• Dashboard URL: https:// http://88.198.191.126/ui/

• Private docker registry URL is: https://88.198.191.126/artifactory/starregistry/

Both require the firewall rules to be configured appropriately (i.e., allow access from a remote

location) to be accessed.

3.5 Management/Monitoring with Portainer
Since the preferred deployment strategy is the docker containerization to facilitate the

ecosystem management and monitoring there are various offerings. One of the proposed for

the STAR deployment, is the Community Edition (CE) of Portainer15.

Portainer CE is a lightweight management toolset that allows you to easily build, manage and

maintain Docker environments. Portainer offers a GUI (Graphical User Interface) which

alleviates the complexity of using CLI (Command Line Input) commands. More specifically, via

Portainer one can execute, in a user-friendly manner, various actions otherwise typed in the

operating system’s command line. Below is a list of actions that can be performed thru

Portainer:

• Build and remove Docker images

• Push Docker containers through the various states of their lifecycle (Start, Stop,
Restart, Remove, etc.)

• Create networks between Docker Engines running on different machines

• Administer volumes assigned to containers

• Inspect container logs and parameters

o Using Log viewer.

• Run commands directly on the operating system enveloped by the container

• Monitor memory, CPU and network usage

• Expert configuration built into the software.

o Including pre-validation checks for complex deployments

• Management of access control and LDAP authentication.

• Remote console with process performance viewer.

• Manage Docker Swarm service stacks and nodes (if existent).

15 https://www.portainer.io/products-services/portainer-community-edition/

http://88.198.191.126/ui/
https://88.198.191.126/artifactory/starregistry/

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 27

o Aggregation view of swarm clusters.

Directions on how the technology providers can install the Portainer environment in a local

Docker instance can be found at the Portainer’s Deployment16 documentation. General

documentation along with user and configuration guides can be found in Portainer’s

Documentation17.

16 https://portainer.readthedocs.io/en/stable/deployment.html
17 https://portainer.readthedocs.io/en/stable/#

https://portainer.readthedocs.io/en/stable/deployment.html
https://portainer.readthedocs.io/en/stable/

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 28

4 The STAR Components

4.1 Security and Data Governance

4.1.1 Components

4.1.1.1 Runtime Monitoring System

4.1.1.1.1 Short Description

Runtime Monitoring System (RMS) enables a real time service that collects security-related

data from monitored IoT system components or applications and stores them for further

processing. Analytics algorithms, like the AI Cyber Defence component, analyse the collected

data to detect abnormal patterns. Additionally, the collected data can be directly used by the

Security Policy Manager after applying special filters for reporting data exceeding “normal”

thresholds. The system also features monitoring probes responsible for the data collection

and publishing to the monitoring platform. The RMS provides appropriate configuration and

management mechanisms over the monitoring probes as well as appropriate data models and

data transformation engines that will maintain the probe information along with their status

and will enable the probe creation, reconfiguration, and discovery.

4.1.1.1.2 Relation with the Reference Architecture

RMS, depicted in Figure 2 above, is a Data collection framework which provides the

specifications and relevant implementation to enable a real time data collection,

transformation, filtering, and management service to facilitate data consumers (e.g., AI Cyber

Defence Module and Security Policy Manager). The framework can be applied in IoT

environments supporting solutions in various domains (e.g., Industrial, Cybersecurity, etc.).

For example, the solution may be used to collect security related data (e.g., network, system,

solution proprietary, etc.) from monitored IoT systems and store them to detect patterns of

abnormal behaviour by applying simple (i.e., filtering and pre-processing) mechanisms.

4.1.1.1.3 Dependencies

The RMS component is using Elastic Stack18 which is comprised of Elasticsearch, Kibana, Beats,

and Logstash (also known as the ELK Stack) and Kafka for the Data Bus. The different

components are used as follows:

• MetricBeats, HeartBeat: collects monitored data (i.e., CPU utilization data) and
availability status (i.e., network Camera availability) using Beats deployed to the
Manufacturing Plant (demo VM).

• HTTP Poller: collects user data (i.e., image production rate) by polling the exposed
services (repository).

• Logstash: Raw monitored Data are transformed and filtered to match the used Data
Model (i.e., Observations) and identified rules (i.e., report values between specific
thresholds).

• Kafka & ElasticSearch: the collected preprocessed data are published to the Data
Bus (Kafka) in order to be accessed by the Security Policies Manager & ElasticSearch
for permeate persistence, visualization and monitoring.

18 https://www.elastic.co/elastic-stack/

https://www.elastic.co/elastic-stack/

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 29

o Security Policies Manager retrieves the preprocessed data by the Data Bus
(Kafka) in order to be combined with other alerts/data (i.e., the AI Cyber

Defence Strategies).

• Kibana: for persisted data visualization.

RMS is also using MongoDB19 for the configuration repository and Java Spring Boot20

framework for developing its microservices with Spring Framework.

4.1.1.1.4 Availability

The runtime monitoring system is available under the Runtime-Monitoring-System GitHub

group21.

4.1.1.1.5 Installation/Deployment guidelines

The RMS installation is supported by Docker Compose. A “docker-compose.yml” file is provided

which automates the installation of the RMS infrastructure.

RMS

To launch the RMS containers, run

sudo docker-compose up

where the docker-compose.yml file is located.

To undeployed RMS containers run

sudo docker-compose down

where the docker-compose.yml file is located.

Data Collection (Metric Beat)

To start Metric Beat for collecting the remote system utilization run the following commands:

cd metricbeat/

sudo sh runmb.sh

Where the metric beat folder is located.

In Kibana:

• In 'Index Management' you should see the 'logstash-xxx-yyy' index. Metricbeat outputs
to logstash, so this is the only index shown.

• Go to 'Index patterns' and create a new index pattern. Name it 'logstash*'. Select the
@timestamp field for temporal ordering.

• Go to the 'Discover' section to see the incoming events.

• Optional: In the 'Dashboard' section we can create a visual representation (graphs) of
certain event fields.

In the 'logstash' folder:

• config/

19 https://www.mongodb.com/
20 https://spring.io/projects/spring-boot
21 https://github.com/star-eu/rms-data-collection

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 30

◼ logstash.yml: The Logstash settings file. Contains options that control Logstash

execution. Pipeline settings, location of config files, etc. Replaces command-

line flags.

◼ pipelines.yml: Instructions for running multiple pipelines in a single Logstash

instance. Contains the paths to the configuration file(s).

• pipeline/

◼ logstash.conf: The main configuration file of a pipeline. It contains the logstash

plugins to be used, the settings for each plugin, as well as the output (i.e.

elastic). Allows the manipulation of event fields, the use of conditionals for

process events, etc.

4.1.1.1.6 Documentation

More information on the RMS component and its subcomponents can be found in section 3 of

D3.6 [STAR-D3.6]. Information on the RMS API can be found in section 3.2 of D3.6 [STAR-

D3.6].

4.1.1.1.7 Test Cases

The following test cases have been identified for an initial validation of the RMS interactions

with other STAR components (intercomponent testing).

Test ID RMS-01

Title Persistence of a Data Source Manifest (DSM)

Pre-Requisite

• DSM should have been already specified.

• The Resource Registry is deployed.

• The Resource Registry interface is reachable.

Expected Outcome A DSM is persisted, and an ID is assigned to it

Actions Expected Result Result Comment

The user sends an HTTP POST request

to /data_source/dsm.

The user receives an

HTTP response with the

persisted DSM and an

id assigned to it.

Receive

the DSM

JSON

object

with an ID

assigned

to it and

an HTTP

status

code OK

(200)

Test ID RMS-02

Title Retrieval of a Data Source Manifest (DSM) record

Pre-Requisite • The Resource Registry is deployed.

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 31

• DSM should have already been persisted and its

id should be known.

• The Resource Registry interface is reachable.

Expected Outcome The requested DSM instance is returned

Actions Expected Result Result Comment

The user sends an HTTP POST request

to /data_source/ :id.

The user receives an

HTTP response with the

persisted DSM.

Receive

the DSM

JSON

object and

an HTTP

status

code OK

(200)

4.1.1.2 Distributed Ledger Services for Data Reliability (DLSDR)

4.1.1.2.1 Short Description

DLSDR provides the means for tracking and tracing industrial data for AI algorithms, notably

the definitions of the data sources used, the data used to configure STAR AI algorithms and

finally the data for persisting their results. To this end, it provides services to the AI algorithms

and applications utilizing their results. The DLSDR module is aimed at reinforcing the reliability

and the security of the source data used in the STAR system. It records information (i.e.,

metadata) about the acquired data to facilitate the detection of abuse and tampering attempts

against these data. Specifically, data ingested in the DLSDR can be queried by other STAR

modules to facilitate the validation of datasets and to ensure that the data that are used have

not been tampered. More details can be found in the Decentralized Reliability for Industrial

Data and Distributed Analytics deliverable [STAR-D3.1 and STAR-D3.2].

4.1.1.2.2 Relation with the Reference Architecture

DLSDR, depicted in Figure 2 above, offers the following functionalities to the STAR Security &

Data Governance framework:

• For persisting/retrieving the AI algorithms configurations metadata which can describe
an algorithm type along with its various instantiation configurations across time by
using the Analytics Engine Configuration (AEC) service (see D3.1 [STAR-D3.1] section
3.3.1), and

• For persisting/retrieving AI algorithm results by utilizing the Analytics Results
Publishing (ARP) service (see D3.1 [STAR-D3.1] section 3.3.2) using the Observation

data structure. Samples of the blockchain persisted Analytics’ results can be consumed
by the Security Policy Management component to confirm their validity compared to
the results that are retrieved from the Data Bus. Additionally, for data validation,

critical results can be directly retrieved from the Data provenance & Traceability
component.

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 32

4.1.1.2.3 Dependencies

The Blockchain MVP will assume the existence of three organizations where we will maintain

a virtual machine hosting their personal Hyperledger Fabric node, as well as its companion

applications. Those machines will require the following Docker containers:

• A Peer Node22

• A CouchDB where the ledger state is being persisted23

• A Certificate Authority (CA)24

• A Command-Line Interface (CLI)25

• A Java application exposing an API making available the Node’s functionalities to the
centralized Blockchain Service Backend and, eventually, the outside world.

One of the machines will be additionally hosting the following Docker containers:

• Multiple instances of the Ordering service

• A Certificate Authority for the above instances

• Fabric Channel(s)

• Chaincode(s)

4.1.1.2.4 Availability

The Distributed Ledger Services for Data Reliability component is available under the Data-

Provenance-And-Traceability GitHub 26 .

4.1.1.2.5 Installation/Deployment guidelines

Images for all those Docker components that are required for the Hyperledger Fabric

deployment are provided by the Hyperledger Fabric development team via DockerHub27. The

deployment process has been made semi-automatic by employing Docker Compose28 scripts

to pull those images, containerize them and deploy them as Docker Swarm stacks (more

details on that are following in the next section). It needs to be highlighted, however, that

deployment of Fabric components and the configuration of the network between them is a

process more complicated than a simple “docker compose up” command, since rather complex

configuration files and TLS certificates ought to have been prepared in advance. More

information about the blockchain infrastructure deployment can be found in D3.1 [STAR-D3.1]

under section 5.

4.1.1.2.6 Documentation

The Distributed Ledger Services for Data Reliability component documentation for data models

and API specifications can be found in the Decentralized Reliability for Industrial Data and

Distributed Analytics deliverable [STAR-D3.1] under section 4. More specifically the following

services are documented:

22 Peer Node downloadable from DockerHub: https://hub.docker.com/r/hyperledger/fabric-peer
23 CouchDB downloadable from DockerHub: https://hub.docker.com/r/hyperledger/fabric-couchdb
24 Fabric CA downloadable from DockerHub: https://hub.docker.com/r/hyperledger/fabric-ca
25 Fabric CLI downloadable from DockerHub: https://hub.docker.com/r/hyperledger/fabric-tools
26 https://github.com/star-eu/dlsdr
27 Hyperledger’s user account on DockerHub: https://hub.docker.com/u/hyperledger
28 Docker Compose official documentation: https://docs.docker.com/compose/

https://hub.docker.com/r/hyperledger/fabric-peer
https://hub.docker.com/r/hyperledger/fabric-couchdb
https://hub.docker.com/r/hyperledger/fabric-ca
https://hub.docker.com/r/hyperledger/fabric-tools
https://github.com/star-eu/dlsdr
https://hub.docker.com/u/hyperledger
https://docs.docker.com/compose/

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 33

• Distributed Ledger Node Management

o Registration and Discoverability of the Platform Nodes in section 4.1.1 of D3.1
[STAR-D3.1].

• Data Provenance & Traceability Services

o Analytics Engine Configuration (AEC) service: Information about the exposed
API, data models and usage can be found in section 4.2.3 of D3.1 [STAR-D3.1]

o Analytics Results Publishing (ARP) service: Information about the exposed API

can be found in section 4.2.4 of D3.1 [STAR-D3.1].

4.1.1.2.7 Test Cases

The following test cases have been identified for an initial validation of the DLSDR interactions

with other STAR components (intercomponent testing).

Test ID SDG-01

Title Persistence of new Processor Manifest (PM) record

Pre-Requisite PM should have been already specified

Expected Outcome A PM is persisted, and an ID is assigned to it

Actions Expected Result Result Comment

The user sends an HTTP POST request

to /processor_config/pm.

The user receives an

HTTP response with the

persisted PM and an id

assigned to it.

DSM

Test ID SDG-02

Title Retrieval of a Processor Manifest (PM) record

Pre-Requisite
PM should have already been persisted and its id

should be known

Expected Outcome The requested PM instance is returned

Actions Expected Result Result Comment

The user sends an HTTP GET request to

/processor_config/:id.

The user receives an

HTTP response with the

persisted PM.

PM

4.1.1.3 AI Cyber-Defence Strategies (ACDS)

4.1.1.3.1 Short Description

The AI Cyber-Defence module aims to defend the STAR-enabled manufacturing platforms

against poisoning and evasion attacks. Smart manufacturing ecosystems nowadays consist of

several AI-powered components in order to improve their production practices. However, AI

systems, are susceptible to attacks that target both the training (i.e., poisoning) and the

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 34

operational (i.e., evasion) phases of Deep Neural Networks (DNNs). In this direction, the AI

Cyber-Defence component will boost the robustness of DNNs against adversarial inputs and

attempts to contaminate the training datasets, and against active attacks that aim to evade

the inference process of AI models.

The implementation of the tool has been completed (see D3.4) and is served as a dockerised

application and is based on a flask server which works in synergy with AI/ML libraries and is

combined with KAFKA in order to enable the input digestion and output sharing. The internal

architecture of the tool is given in Figure 18. The reader can refer to D3.4 for more details on

the AI Cyber-Defence tool and the defence strategies put forth.

Figure 12: AI Cyber-Defence tool internal architecture

4.1.1.3.2 Relation with the Reference Architecture

The AI Cyber-Defence tool is positioned at the AI Security and Data protection layer of the

STAR architecture and works in synergy with the blockchain-based data provenance

mechanisms, the Data management and Analytics engine, and the Explainable AI. The output

of the AI Cyber-Defence mechanism will be used as input to the Security policy manager to

perform a risk assessment and attack mitigation functionalities. Hence, the aim of the AI

Cyber-Defence module coincides with the aim of the AI security and data protection layer

which is to boost the safety, reliability and transparency of the functionalities of the upper

operational layers of STAR.

4.1.1.3.3 Dependencies

• Major libraries: The component is built in python, currently its major dependencies
include: python >= 3.7, tensorflow >= 2.6.4, keras >= 2.6.0, torch >= 1.11.0, and
Adversarial Robustness Toolbox (ART) v1.10, flask=2.1.2, Kafka-python=2.0.2,
pandas=1.4.2, openpyxl=3.0.10, pillow=9.1.1

• Environment: The tool comes packaged as a docker container to be platform
independent and make management of python, OS and Blockchain dependencies
easier and more flexible.

• Components: The AI Cyber-Defence tool comes with KAFKA integrated in order to be
able to handle inputs and outputs to and from the tool in an interoperable and unified

manner.

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 35

4.1.1.3.4 Availability

Currently, the code of the tool is under continuous development as new defence strategies

are examined. The conditions on whether and/or under which license the code and the artifact

will become available have not been clearly defined yet.

4.1.1.3.5 Installation/Deployment guidelines

For the first ever execution through console one must navigate to the location of the .yml file

and type the command:

docker-compose up -d

This first execution shall delay a little because it pulls pre-built images from online repositories

(e.g. Docker Hub).

4.1.1.3.5.1 Verification

To verify that everything is well, one may type:

docker ps

Figure 13: Console output of docker ps

As can be seen the application has two main services, the A) star_consumer responsible for

managing the inputs received and the B) star_consumer which hosts the main business logic

of the detection mechanism for the poisoning and evasion attacks. In addition, C) KAFKA is

used as the component that will store the output of the detection process, as well as D)

Zookeeper to complement the operation of KAFKA.

To open their logs, one may type: docker logs -f <container name>. To exit the log type

Ctrl+C.

4.1.1.3.5.2 Un-deployment

To stop and remove all containers one may type the command: docker-compose down

4.1.1.3.6 Documentation

4.1.1.3.6.1 Description of the input’s outputs of the components

Input sources of AI Cyber-Defence tool:

• STAR Secure Storage infrastructure: This entity is a vital component in the STAR
project architecture as it provides a unified datalake for all AI-enabled STAR

components to consume data mainly for training reasons. That is, the AI Cyber-
Defence module acquires datasets (e.g., images) for training purposes of the AI
models. To establish this communication, the AI Cyber-Defence tool integrates the
necessary TRINO connectors.

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 36

• STAR Runtime Monitoring system: The runtime monitoring system is used for the
acquisition of statistical measurements stemming directly from core systems of the
manufacturing floor. These measurements may indicate the presence of anomalous
behaviours that could be used as inputs in the inference process. It has to be noted

that this dependency with the RMS and XAI has been only approached from a scientific
perspective. D3.4 provided a new chapter, based on the publications in (Afzal-
Houshmand, 2021) and (Afzal-Houshmand, 2023) on the use of explainable artificial
intelligence to enhance data trustworthiness in crowd-sensing systems. Thus, the

actual connection in the context of the integrated framework has not been realised.
However, the reader can refer to D3.4 for more details regarding the designed
scientific approach on the use of sensory data to detect poisoning and evasion attacks.

• Data streaming pipelines: This entity refers to the data sources that are used during
the actual deployment of the STAR platform to the pilot sites. Towards this phase of

the project, the AI Cyber-Defence tool takes the necessary steps in order to be able
to handle input data stemming from pilots in a streaming mode.

Output of AI Cyber-Defence:

The goal of the AI Cyber-Defence tool is to detect poisoning and evasion attacks against the

STAR AI Systems. In this regard, the detection process, depending on the deployed detection

model, a detection label is generated (evasion/poisoning) as well as a confidence level of the

AI model. An indicative example of the output including additional metadata of the process is

given below.

The APIs exposed by the AI Cyber-Defence tool has been documented in D3.4 in section 2.4.

Table 2: Indicative output of AI Cyber-Defence tool.

{

 "id": "1ee5f356-632e-11ec-90d6-0242ac120003",
 "dataSourceID": "3341e5b2-632e-11ec-90d6-0242ac120003",
 "assetID": "4daef4f2-487e-48e1-8f8f-d526d36aa5cd",
 "dataKindID": "65a7604e-9a94-4a74-9a34-3e44c6cebd49",
 "timestamp": "2022-01-10 13:01:29.709071",
 "location": {
 "geoLocation": {

 "latitude": "53.107731",
 "longitude": "6.088499"
 },
 "virtualLocation": "8.162.203.200"
 },
 "value": {
 "attackID": "f777d14b34c3cdff92468fbfa55aeeddd8298745",
 "attackContext": "Evasion attack",
 "Confidence": "90.12",
 "timestamp": "2022-01-10 13:01:22.709095"
 }
}

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 37

4.1.1.3.7 Test Cases

Test ID AICD-01

Title
Detect the injection of an adversarial input into

the AI pipelines of STAR.

Pre-Requisite

• Pretrained adversarial neural network that

performs the detection

• Preconfigured parametrization of the

detection algorithm

Expected Outcome
Classification of the injected input to an

adversarial category

Actions Expected Result Result Comment

An input is given into the STAR tools

pipeline

• Raise of alarm

• provision of a

confidence level

on the prediction

Executed

The structure

of the output

has defined

above. The

test has been

completed in

context of the

experimental

phases of the

tool

development

and in the

context of the

integration

actions with

the pilots.

Test ID AICD-02

Title
Detect the presence of an adversarial example in

the training datasets.

Pre-Requisite

• Dataset to be stored on the Storage

infrastructure of STAR

• Pre training model for the detection of

poisoning attacks

Expected Outcome Detection of poisonous instances in the datasets

Actions Expected Result Result Comment

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 38

Adversarial instances are present in

training datasets stored in the STAR

Storage Infrastructure

• Raise of alarm

• Detection of

specific instance

in a dataset.

Executed The structure

of the output

has been

defined above.

The execution

of the test case

has been

performed in

the context of

the

experimental

process in

D3.4.

Test ID AICD-03

Title
Correct acquisition/validation of tool configuration

through STAR Blockchain

Pre-Requisite

• Blockchain APIs are known

• Initial configuration set has been stored on the

blockchain

Expected Outcome
Positive response if the configuration is valid and

negative otherwise.

Actions Expected Result Result Comment

The AI Cyber-Defence tool triggers the

Blockchain API to acquire the correct

configuration.

Positive response if

the configuration is

valid and negative

otherwise.

Executed.

The test has

been

executed in

the context

of the

integration

actions.

4.1.1.4 Risk Assessment and Mitigation Engine (RAME)

4.1.1.4.1 Short Description

The Risk Assessment and Mitigation Engine is the technical component that complement the

Security Policy Manager for the visualisation of the threats and the corresponding risks. The

RAME is based on OLISTIC. More specifically, OLISTIC is UBITECH’s Risk Assessment tool

which can support the security officer in getting an overview of the security status of the

factory, and more specifically, of the production lines and business processes of interest.

Overall, RAME enables the risk management and the identification and visualization of risks

through comprehensive and reactive visualization, while it provides the means to the security

officer to manage the life cycle of mitigation actions that helps to eliminate or control risk

events that have been detected by the monitoring mechanisms of STAR.

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 39

The interested reader can refer to D3.6 where the final version of the RAME tool is provided.

D3.6 concluded the technical work and the developments actions of WP3 tools, including

RAME. In the D3.6, the reader can have a comprehensive report on the new APIs that enable

the integration of RAME in the overall architecture of STAR.

4.1.1.4.2 Relation with the Reference Architecture

OLISTIC contributes to the flow of the AI Security and Data protection layer, as the component

that receives the security incidents that are being detected by the Security Policy Manager, as

a result of policy violations, and offers to the security officer an interactive dashboard in order

to understand the security posture of the manufacturing environment, considering the existing

vulnerabilities and weak points of systems.

4.1.1.4.3 Dependencies

• Major libraries: The component is a Quarkus-based application and currently its major

dependency is Java SE JDK 11. In addition, the backend application is based on a

proprietary application stack built by UBITECH. For fulfilling the purpose of internal

storage and event management, OLISTIC uses also PostgreSQL (with pgAdmin), ELK

stack (Elastic, Logstash, Kibana), Mongo DB and MinIO.

• Environment: The tool comes packaged as a docker container to be platform

independent.

• Components: The RAME comes with PostgreSQL (with pgAdmin), ELK stack (Elastic,

Logstash, Kibana), Mongo DB and MinIO integrated in order to be able to handle inputs

and outputs and store the generated events. interoperable and unified manner.

4.1.1.4.4 Availability

This is a proprietary component. UBITECH is responsible to manage the deployment of the

tool on its premises.

4.1.1.4.5 Installation/Deployment guidelines

For the first ever execution through console one must navigate to the location of the .yml file

and type the command:

docker-compose up -d

4.1.1.4.5.1 This first execution shall delay a little because it pulls pre-built images from online

repositories (e.g. Docker Hub) Verification

To verify that everything is well, one may type:

docker ps

The main services of the application are A) The back-end stack of UBITECH, B) PostgreSQL

C) pgAdmin, D) ELK stack (Elastic, Logstash, Kibana), E) Mongo DB and F) MinIO.

To open their logs, one may type: docker logs -f <container name>. To exit the log type

Ctrl+C.

4.1.1.4.6 Documentation

As aforementioned, the RAME works in synergy with the security policy manager of STAR.

More specifically, the latter detects security incidents against the monitored environment and

generates attack events which are sent to the RAME. Then, RAME undertakes the task of

performing the risk assessment and visualizing the risk and the offensive events to the security

officer. After performing the risk assessment, the security administrator can check a

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 40

comprehensive report in the tool’s dashboard reflecting the security posture of the monitored

production line.

4.1.1.4.7 Test Cases

Test ID RAME-01

Title
Insertion of software and hardware assets into the

RAME dashboard.

Pre-Requisite

• The administrator has the knowledge on the

assets taking part in the production lines of a

factory

• The administrator has identified the

relationship connecting the assets together

Expected Outcome
A graph-based representation of the environment

is generated

Actions Expected Result Result Comment

The administrator adds the assets

through a structured and well-defined

data entry process.

• A list of assets is

created.

• The backend

databases store the

provided

information

A graph-

based

representa

tion of the

environme

nt is

generated

Test ID RAME-02

Title

Creation of an attack scenario denoting the

presence of an abuse case and the assessed

environment

Pre-Requisite

• The SPM triggers the APIs of RAME to inform

the latter about the detection of an abuse

case.

• The database of RAME has already stored

abuse cases that have been defined by the

administrator.

Expected Outcome
A new attack scenario entry is generated in the

risk assessment dashboard

Actions Expected Result Result Comment

The SPM identifies/detects an abuse

case and triggers the RAME API.

• A new attack

scenario is

generated denoting

A risk level

is

associated

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 41

the presence of an

abuse case.

• The risk

assessment can be

triggered in order

to derive the risk

level of the event.

with the

assets that

faced the

abuse

case.

4.1.1.5 Security Policies Manager (SPM) - Security Policies Repository (SPR)

4.1.1.5.1 Short Description

SSPM is a tool to be used by the factory personnel, in particular security/IT officers, to

configure security policies according to specific business and security requirements. The main

purpose of the SSPM is to detect poisoning and evasion attacks and report the related risk to

the Risk Assessment module OLISTIC, to generate alerts.

SSPM integrates the Cyber-Defence mechanism of the Star Blockchain infrastructure, Data

Provenance & Traceability, RMS, and AI Cyber-Defence module.

4.1.1.5.2 Relation with the Reference Architecture

The SSPM acts as a middleman, as it aggregates the inputs received from the RMS and the

AI Cyber-Defence Module, evaluates the received information based on security policies

defined by the security officer, and interacts with OLISTIC to create and assess risk scenarios.

The SSPM is implemented as a Python application, with a user interface and backend that

exploits OPA29, an open-source, general-purpose policy engine that unifies policy enforcement

across the stack, as an external service for policies evaluation.

Figure 14: SSPM high level architecture

Figure 14 depicts a scheme of the SSPM architecture, which is composed of 5 modules:

• Kafka Consumer: it reads form the specific topics published by the RMS and AICD
on the Data Bus and passes the received messages to the SSPM backend;

• OPA Server: the policy engine used to evaluate the received inputs against the

29 https://www.openpolicyagent.org/

https://www.openpolicyagent.org/

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 42

policies defined by the security officer;

• SSPM database: it stores security policies for persistence and SSPM configuration;

• SSPM backend: it manages inputs from the RMS and AICD components, interacts
with OPA for policies evaluation and calls OLISTIC APIs based on the evaluation

results;

• SSPM GUI: allows the security officer to create and update policies, and to configure
the attack scenario to be created in OLISTIC when a policy has been violated.

More detailed information on SSPM can be found in deliverable D3.6.

SSPM supports the logic for multiple types of policies, evaluating the input received through

the Kafka queue from the RMS and the AI Cyber-Defence Star’s components. These policies

can be applied to the following scenarios:

• Poisoning attack detection;

• System CPU workload detection;

• Heavy traffic or other probe’s data that can signal a suspicious behaviour detection;

• Evasion attacks detection.

4.1.1.5.3 Dependencies

• Major libraries – the SSPM is developed as a Python application, the frontend
component uses the Flask Framework, whereas the backend exploits the kafka-python

library. SSPM uses a MySQL database and peewee as an ORM.

• Environment - 2vCPU, 4GB RAM, 40GB disk space

• Components – SSPM backend, SSPM user interface to define and manage security
policies, OPA, rule’s storage.

• Output - interaction with OLISTIC through its APIs.

4.1.1.5.4 Availability

The SPPM is hosted on GFT server, and the User Interface is available through OLISTIC.

4.1.1.5.5 Installation/Deployment guidelines

The application is not contained within a single Docker image but is instead deployed as a

Software as a Service (SAAS). In cases where installation on an external platform is required,

it is possible to create a standalone Docker image. Currently, however, the solution is provided

as a SAAS and is installed on a GFT server. It is accessible to OLISTIC and, therefore, to the

STAR platform.

4.1.1.5.6 Documentation

Here below a short report about the availability of components data:

• API doc (e.g., swagger availability) -> not applicable

• Description of the input’s outputs of the components -> available and described in
sub-paragraph 4.1.1.5.7

• High level API description -> not applicable

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 43

4.1.1.5.7 Test Cases

Test ID SDC-01

Title Attack evaluation

Pre-Requisite
Kafka queue from RMS (through Data Bus) and AI

Cyber-Defence Module

Expected Outcome OLISTIC APIs are triggered to alert the security officer

about the possible threat.

Actions Expected Result Result Comment

The security officer can access SSPM

interface and define security policies

The rules are saved

and uploaded to OPA

The rules are saved

and uploaded to OPA

In the SSPM the security officer can

create templates attack scenario

The templates attack

scenarios are saved

The templates attack

scenarios are saved

The security officer can link a rule to

an attack scenario that must be

created in OLISTIC if the rule is

violated

The association is

saved.

The association is

saved

SSPM receives inputs from RMS and

XAI Cyber-Defence module and

validates the data against the

defined security rules. SSPM

communicates the existence of a

threat to OLISTIC by triggering its

APIs

The data is correctly

evaluated, and

threats are

identified based on

defined security

policies.

An attack scenario

is created

accordingly to the

association defined

by the security

officer for the

specific identified

threat.

A risk assessment is

created and run in

OISTIC.

The data is correctly

evaluated, and

threats are

identified based on

defined security

policies.

An attack scenario

is created

accordingly to the

association defined

by the security

officer for the

specific identified

threat.

A risk assessment is

created and run in

OISTIC

4.1.2 Use Cases
The purpose of this section is to be used as a reference on how the different components

from WP3 explained above are going to be used within the context of WP6 and are

prepared/tested in this task/deliverable. The table contains the components from WP3 that

are planned to be utilised in the different pilots.

Use Case ID Use Case title Involved Component(s) Short Description

PCL UC2 AI Cyber-Defence

and decentralized
reliability for

• Runtime Monitoring
System

 The WP3 tools

ensure the reliability
of the production

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 44

industrial data

• Distributed Ledger
Services for Data
Reliability

• AI Cyber-Defence
Strategies (ACDS)

• Risk Assessment and
Mitigation Engine (RAME)

• Security Policies Manager
(SPM), Security Policies
Repository (SPR)

line and the integrity
of the visual quality

inspection system
against AI
adversarial attacks.

IBER Pilot #4 Agile Production

Management
System Data
Integrity and

Reliability

• Runtime Monitoring
System

• Distributed Ledger
Services for Data
Reliability

• AI Cyber-Defence
Strategies (ACDS)

• Risk Assessment and
Mitigation Engine (RAME)

• Security Policies Manager
(SPM), Security Policies
Repository (SPR)

The WP3 tools

ensure the reliability
of the production
line and the integrity

of the visual quality
inspection system
against AI

adversarial attacks.

DKFI UC3 Robot

Reconfiguration
based on the
Dynamic Layout

• Runtime Monitoring
System

• Distributed Ledger
Services for Data
Reliability

• Risk Assessment and
Mitigation Engine (RAME)

• Security Policies Manager
(SPM), Security Policies
Repository (SPR)

The WP3 tools

ensure the reliability
of Robotino’s
behavior by

collecting, analyzing
and validating
crucial operational

data for the sake of
identifying abnormal
behaviors or abuse

cases that may alert
the expected
behavior of the

Robotino.

4.1.3 Inter WP3 integration and communication
WP3 integration relies on the APIs which have been developed by each WP3 tool in the context

of the development actions of WP3. These APIs are used for enabling the inter WP3 integration

and communication. In this section we are not, referring to the internal APIs that enable the

operation of each independent tool with its internal sub-components, but we refer on how the

WP3 tools communicate among each other on the WP3-level basis.

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 45

Figure 15: WP3 architecture and designed APIs

Thus, as can be seen in Figure 15, the purple boxes refer to the designed APIs of each

component which have been designed in order to materialize all the information flows that

the Security and Data Governance Layer of STAR requires in order to meet its functional

objectives. A short description of the APIs is given in the following table with appropriate

references to the technical deliverables of the components.

 API Description Tool exposing the
API

Tools using the API

AI Cyber-Defence API
(See D3.4, Section
2.4)

This API is used for
posting images to the
AI Cyber-Defence

Engine in order to
trigger the
Discriminator to infer

whether the posted
image is an adversarial
example or not. This is
the main endpoint

triggered from the
pilot’s environment in
order to stream data to

the AI Cyber-Defence
tool in parallel to the
production process.

AI Cyber-Defence. Tools of the pilot
partners that need
to verify that the

images being
processed in the
context of the

manufacturing
process are not a
product of an
adversarial

attempt.

KAFKA (Data Bus)
(See D3.6, Section
3.3)

Data Bus is a
communications
channel through which

all real time data is
routed. Platform
components may

subscribe to the data
bus to receive data of
specific interest to

them. The Data Bus is
based on KAFKA,
materializing a

Publish/Subscribe

Used a central
component for all
WP3 tools. It is

deployed as part of
the RMS system.

• AI Cyber-
Defence (Pub)

• Security Policy
Manager (Sub)

• Runtime
Monitoring
System (Pub)

• Tools of pilot
partners (Pub)

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 46

communication
channel.

RMS or Pilot Specific
APIs
(See D3.6, Section 3)

This API refers to the
APIs used for
connecting the pilot

sites with the WP3 tools
pipeline, and more
specifically with the

Runtime Monitoring
System. Depending on
the use case, the pilot

partners may take
advantage of the APIs
exposed by the RMS

tool in order to push
data to the WP3
pipeline, or the RMS

tool takes advantage of
APIs exposed by the
systems of the partners

in order to consume
vital information.

Depending on the
use case, the APIs
is exposed by the

RMS tool or we rely
on APIs designed
by the use case

partners

• RMS

• Systems of the
use case
partners

BlockChain API

(see D3.2 section
3.3.1)

The STAR blockchain

infrastructure exposes
an API for
persisting/retrieving

the AI algorithms
configurations
metadata which can

describe an algorithm
type along with its
various instantiation

configurations across
time by using the
Analytics Engine

Configuration (AEC)
service (see D3.2
section 3.3.1).
Information about the

exposed API, data
models and usage can
be found in section

4.2.3 of D3.2

STAR Blockchain

Infrastructure
• Any tool that

needs to
validate its

configuration
(e.g., the AI
Cyber-Defence
is using this

API)

OLISTIC API

(see D3.6, Section
4.3.4)

UBITECH’s technical

team released a
complete
documentation of the
APIs of the tool in order

to enable full
integration with other
STAR tools that may

Risk Assessment

and Mitigation
Engine, based on
UBITECH’s
OLISTIC risk

assessment tool.

Security Policy

Manager

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 47

need to interact with
the Risk Assessment

and Mitigation Engine
of STAR. The APIs
enable the exchange of

information that refer
to the identification of
abuse cases, as a result

of the detection
processes of WP3 tools,
aiming to the

visualization of the
events to the RAME
dashboard

Leveraging these APIs, each module can effortlessly establish connections with the other

components in the WP3 architecture. The main integration currently is completed. Other

interactions can be easily implemented if needed thanks to the APIs exposed by the tools.

4.2 Safe, Transparent and Reliable Human-Robot Collaboration

4.2.1 Components

4.2.1.1 Simulated Reality (SR)

4.2.1.1.1 Short Description

The scope of the Simulated Reality component is to assist in the Automated Quality Inspection

use-case of the project where it generates simulated images to balance defect datasets that

suffer from skewed class data. Additionally, it is also intended to make the quality inspection

algorithms more robust by leveraging highly generalizable GAN architectures to generate out-

of-distribution images that will help visual classifiers recognize novel inputs.

4.2.1.1.2 Relation with the Reference Architecture

Simulated reality aims to support components in the context of the Trusted Human-AI

interactions pillar of the reference architecture. In its current form, it interacts with the ML

Algorithms of the STAR Machine Learning and Analytics Platform and with Human-AI

interaction components such as Active Learning, by providing them with synthetic data. The

goal is for the simulated reality component to serve as a loosely coupled utility that can

augment a ML algorithm’s training data on demand.

4.2.1.1.3 Dependencies

• Major libraries: The component was built in python, currently its major dependencies
include: python >= 3.7, tensorflow >= 2.6.4, keras >= 2.6.0, torch >= 1.11.0

• Environment: Since the SR component is intended to serve the ML Algorithms at
training time it is delivered in the form of long-running scripts/batch jobs, currently

open-sourced in the form of Jupyter notebooks. These notebooks can be run on
demand on a cluster with Jupyter installed or, alternatively, they can be converted to
.py files and run as python scripts. Computationally heavy tasks such as GAN training

and fine-tuning require access to a GPU.

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 48

• (Sub-)Components: Two batch jobs (as Jupyter notebooks) for training data
generators, one for rebalancing the training data and the second for generating out-
of-distribution defects.

4.2.1.1.4 Availability

The open-sourced Jupyter notebooks can be found under two GitHub repositories:

https://github.com/tspyrosk/oversampling-defect-recognition

https://github.com/tspyrosk/osr-data-augmentation

The first repository corresponds to the data augmentation algorithm aimed at balancing an

input dataset and the second aimed at making the algorithm robust to novel inputs.

4.2.1.1.5 Installation/Deployment guidelines

The notebooks can be run on a cluster with Jupyter installed or on a local installation. They

can also be easily converted to .py files through Jupyter and run as python batch jobs/scripts.

For better performance they need access to a GPU (NVidia K80 GPU was used for the

evaluation).

4.2.1.1.6 Documentation

Short Documentation for each notebook can be found in the corresponding repository

README.md files.

4.2.1.1.7 Test Cases

Test ID SR-01

Title
Generation of Synthetic Images for Visual Quality

Inspection

Pre-Requisite
Access to original training images and potentially

required pre-trained models

Expected Outcome

Generation of images that are visually similar to the

originals (as judged through human perception,

perceptual loss, FID etc.)

Actions Expected Result Result Comment

A STAR ML classifier requests

synthetic data for balancing its input

dataset (e.g., shaver shell prints)

The requested data is

generated and saved in

a specific location that

should be accessible to

the requesting

component

The final

augmented

dataset

and a

classifier

trained on

it

Test ID SR-02

Title
Generation of Novel/OOD defects for Visual Quality

Inspection

https://github.com/tspyrosk/oversampling-defect-recognition
https://github.com/tspyrosk/osr-data-augmentation

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 49

Pre-Requisite
Access to original training images and potentially

required pre-trained models

Expected Outcome

Generation of images that represent plausible

defects but lie outside of the training classes’

distributions

Actions Expected Result Result Comment

A STAR ML classifier requests

synthetic data to improve its

robustness (e.g., shaver shell

prints)

The requested data

is generated and

saved in a specific

location that should

be accessible to the

requesting

component

The final

augmented

dataset

and a

classifier

trained on

it

4.2.1.2 Active Learning (AL)

4.2.1.2.1 Short Description

The active learning module implements multiple active learning strategies to assist the

machine learning models in learning from the most meaningful data and avoid devoting time

to label data instances that would eventually provide little or no performance enhancement to

the machine learning model at hand.

4.2.1.2.2 Relation with the Reference Architecture

Active Learning aims to support components in the context of the Trusted Human-AI

interactions pillar of the reference architecture. In its current form, it may interact with the

machine learning algorithms, and requires selecting data (natural or synthetic - the synthetic

one generated from the Simulated Reality.

4.2.1.2.3 Dependencies

Major libraries: The AL component is built in python, currently its major dependencies

include: python >= 3.7, modAL30, scikit-learn >= 0.18, FastAPI.

Environment: The active learning component is envisioned to be packaged as a Docker

container to be platform independent and make management of python and OS dependencies

easier and more flexible. The Docker instance will be running some Linux distro. The

application has not been dockerized yet.

Components: The Active Learning module has a dependency on the MongoDB to store data

that is relevant to the service operation.

4.2.1.2.4 Availability

The code has been made available in a project-specific repository (https://github.com/star-

eu/module-active-learning). The Docker images are yet to be made available in the artefact

store.

30 https://modal-python.readthedocs.io/en/latest/

https://github.com/star-eu/module-active-learning
https://github.com/star-eu/module-active-learning

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 50

4.2.1.2.5 Installation/Deployment guidelines

The installation and deployment guidelines have been provided at the README.md file at the

root of the project-specific repository.

4.2.1.2.6 Documentation

The REST API documentation is provided as a Swagger REST API endpoint. The REST API

documentation can be accessed at the following endpoint: http://[ip]:[port]/docs

4.2.1.2.7 Test Cases

Test ID AL-01

Title Add feature vector data

Pre-Requisite

• A dataset exists with some labeled data

• A supervised machine learning model exists,

trained on the abovementioned dataset

• A feature vector has been assembled.

Expected Outcome
A request response indicating whether the

operation was successful or not.

Actions Expected Result Result Comment

The user sends an HTTP GET request to

MODEL_REPOSITORY_BASE_URL/

/module-active-learning/feature-vectors.

The user receives an

HTTP response with a

200 status code and a

JSON exposing the ID

assigned to such

feature vector.

The

feature

vector

was

success

fully

register

ed.

Test ID AL-02

Title
Add model prediction for a particular feature

vector

Pre-Requisite

• A supervised machine learning model exists,

trained on a particular dataset and has been

registered in the model repository

• A feature vector has been registered.

• Predictions for the given feature vector has

been created with the abovementioned

model

Expected Outcome
A request response indicating whether the

operation was successful or not.

Actions Expected Result Result Comment

The user sends an HTTP GET request to

MODEL_REPOSITORY_BASE_URL/

/module-active-learning/model-

predictions

The user receives an

HTTP response with a

200 status code and a

JSON informing the

feature vector ID, the

model ID and the

predictions assigned to

The

model

predictio

ns for

this

particula

r feature

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 51

the feature vector in

the scope of this

particular request.

vector

have

been

successf

ully

registere

d.

Test ID AL-03

Title

Get top N unlabeled feature vectors given a

particular machine learning model and active

learning strategy.

Pre-Requisite

• A supervised machine learning model

exists, trained on a particular dataset and

has been registered in the model

repository

• A set of feature vector has been

registered.

• Predictions for the given feature vector has

been created and registered with the

abovementioned model and the

abovementioned feature vectors

• The amount of unlabelled feature vectors

to be retrieved has been specified

Expected Outcome
A request response indicating whether the

operation was successful or not.

Actions Expected Result Result Comment

The user sends an HTTP GET request to

MODEL_REPOSITORY_BASE_URL/

/module-active-learning/model-

predictions

The user receives an

HTTP response with a

200 status code and a

JSON informing feature

vector ID, the dataset

ID, the feature vector

(list of values), and

feature vector label

(value should be -1,

indicating no label has

been assigned so far).

The

unlabel

ed

feature

vectors

have

been

success

fully

retrieve

d.

Test ID AL-04

Title Provide label for feature vector.

Pre-Requisite

• A supervised machine learning model

exists, trained on a particular dataset and

has been registered in the model

repository

• A set of feature vector has been

registered.

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 52

• Predictions for the given feature vector has

been created and registered with the

abovementioned model and the

abovementioned feature vectors

• An unlabelled feature vector has been

retrieved for annotation

Expected Outcome
A request response indicating whether the

operation was successful or not.

Actions Expected Result Result Comment

The user sends an HTTP GET request to

MODEL_REPOSITORY_BASE_URL/

/module-active-learning/feature-

vectors/{id}/{label}

The user receives an

HTTP response with a

200 status code and a

JSON informing feature

vector ID, the dataset

ID, the feature vector

(list of values), and

feature vector label

(value should be the

one provided by the

user).

The

unlab

eled

featur

e

vector

has

been

succe

ssfully

updat

ed

with

the

label.

4.2.1.3 Production Processes Knowledge Base (PPKB)

4.2.1.3.1 Short Description

PPKB is a knowledge base that is optional to use. It can be used to store meaningful data

related to the manufacturing environment. In particular, two demo applications have been

developed: (i) an application to register information related to a demand forecasting use case

and recommendations provided based on knowledge related to the client location and

information related to logistics (e.g., estimated transport delivery time and costs), and (ii) an

application to retrieve information on how users consider class activation maps and anomaly

maps (obtained from explainable artificial intelligence and unsupervised machine learning

methods, respectively) should be recoloured.

4.2.1.3.2 Relation with the Reference Architecture

The PPKB is an optional component that has no strong requirements on the interactions with

other components. The relation to specific components is based on particular use cases and

desired data to be collected. Please notice, that the knowledge base is a set of collected

knowledge. Therefore, the applications used to generate it have to support a particular use

case objective and may not relate to the reference architecture to achieve so.

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 53

4.2.1.3.3 Dependencies

Major libraries: The PPKB component is built in python, currently its major dependencies

include: python >= 3.7, and owlready231.

Environment: The PPKB has been generated and the knowledge gathered in (ii) has been

used to generate predictive machine learning models. The knowledge base itself has been

recorded in memory, and the collected knowledge has been exported for experiments

performed with (ii).

4.2.1.3.4 Availability

The knowledge bases will not be published.

4.2.1.3.5 Installation/Deployment guidelines

No installation guidelines are provided, given only proof-of-concept applications for the

knowledge-base generation have been implemented and are not released publicly.

4.2.1.3.6 Documentation

No documentation is provided, given only proof-of-concept applications for the knowledge-

base generation have been implemented and are not released publicly.

4.2.1.3.7 Test Cases

The following tests refer to the application (i) mentioned above.

Test ID PPKB-APP1-01

Title

Records user provided feedback for particular

target entity (whose type can be forecast or

explanation).

Pre-Requisite No prerequisites are required for this case.

Expected Outcome

New instance of the feedback entity is created

and connected with the target entity the

feedback is provided about. New knowledge and

relationships are created in the knowledge base.

Actions Expected Result Result Comment

The user sends an HTTP POST request to

MODEL_REPOSITORY_BASE_URL/record

_feedback that contains the information

about the target entity and content of the

feedback as specified in the HTTP query

syntax.

The user receives an

HTTP response with a

200 status code and a

JSON body with the ID

of the resource created

and other relevant

information.

Test ID PPKB-APP1-02

Title
Retrieves a set of forecasts that meet the

specified criteria.

Pre-Requisite No prerequisites are required for this case.

31 https://owlready2.readthedocs.io/

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 54

Expected Outcome
Instances of forecasts and their IDs are

retrieved from the knowledge base.

Actions Expected Result Result Comment

The user sends an HTTP GET request to

MODEL_REPOSITORY_BASE_URL/get_fo

recasts that contains the search criteria.

The search query should be specified in

the SPARQL

(https://www.w3.org/TR/sparql11-

query/) language. Other parameters are

specified following the HTTP query

syntax.

The user receives an

HTTP response with a

200 status code and a

JSON body with the IDs

of the forecasts

together with other

requested fields, such

as number of items

forecasted, timestamp,

type of items, etc.

Test ID PPKB-APP1-03

Title
Retrieves an explanation associated with the

given forecast.

Pre-Requisite No prerequisites are required for this case.

Expected Outcome
Instances of explanations for the given forecast

are retrieved from the knowledge base.

Actions Expected Result Result Comment

The user sends an HTTP GET request to

MODEL_REPOSITORY_BASE_URL/get_e

xplanations that contains the search

criteria.

The search query should be specified in

the SPARQL

(https://www.w3.org/TR/sparql11-

query/) language. Other parameters are

specified following the HTTP query

syntax.

The user receives an

HTTP response with a

200 status code and a

JSON body with the IDs

of the explanations

together with other

requested fields, such

as type of explanation,

XAI technique used for

creating it, most

significant features (if

applicable), etc.

4.2.1.4 Natural Language Processing (NLP)

4.2.1.4.1 Short Description

NLP is an optional module that facilitates communication between the operators and the

machine, especially for web browser-based applications.

In our particular case, the functionality offered by this module is related to Speech-To-Text

(STT), Text-to-Speech (TTS) technologies and conversational agents. In this way, UIs that

require multimodal interaction can make use of these technologies to provide support for voice

communication.

It should be noted that the module has focused on evaluating the different alternatives

available for human-machine voice interaction (local, cloud, and mixed) and is not so much a

https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 55

packageable component as an example code and a proof-of-concept that web-based UI

components can implement in their respective modules.

It is also important to mention that the NLP module is not only focused on STT and TTS. The

term NLP covers a wide spectrum of technologies, within it is the part dedicated to Sentiment

Analysis or conversational agents and chatbots that we consider may be of interest to

understand and give context to the interaction.

4.2.1.4.2 Relation with the Reference Architecture

As mentioned above it is an optional component, the NLP is not necessary in all cases or pilots

and even in some cases it is not recommended or possible to use it (e.g., noisy environments

or environments where the operator cannot wear a headset for safety reasons).

In any case, it is possible to integrate it in any of the user interfaces that have interaction with

this user through browser (Since is part of the NLP solution, the one dealing with quick TTS

and STT has been developed in JavaScript).

The image below (Figure 16) shows the architecture of the component. The box indicated as

web-app represents the web applications of the STAR architecture with Voice interaction

needs or interest in Sentiment Analysis or Polarity Detection.

Figure 16: Architecture of the components for Nature Language Processing

The main route, if the application is browser-based, and if the browser used by the PC or

machine with which the operator is interacting supports it, is through the Web Speech API. In

some cases, it is possible to use the HTML5 Audio module to support incompatible browsers

and clients.

The alternative route is for specific cases where more control over the audio is required (for

example because extra processing is required) or cases where the client application is

integrated with a third-party service. In the first case, TTS/STT can be implemented in a

server using Mozilla DeepSpeech and similar libraries, in the second case the developer could

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 56

make use of the APIs of any cloud service. It is important to mention that although sentiment

analysis (SA) can be performed in the browser itself, the results are not particularly good, and

it is common to implement SA on a (cloud) server where previously trained sentiment analysis

AI models can be executed.

4.2.1.4.3 Dependencies

This module uses the functions offered by browsers compatible with the Web Speech API for

speech synthesis and recognition.

In the case of Speech Synthesis, the support is included by default in most modern browsers.

Speech Synthesis is supported on Google Chrome, Microsoft Edge, Mozilla Firefox (only voices

installed on the client machine), Opera and Safari for PCs and on Chrome, Firefox and Safari

for Android. Regarding speech recognition, the support also comes by default in most modern

browsers and is a matter of implementing some support in JavaScript and fine tuning the

grammar to enable the functionality.

4.2.1.4.4 Availability, Installation/Deployment guidelines and Documentation

This module is not packaged since its functionality needs to be integrated into the application

that is going to use voice interaction. Information related to the tests carried out with different

STT and TTS solutions, grammar tests and two proofs of concept and reference

implementations that demonstrate their use are offered.

4.2.1.4.5 Test Cases

Test ID NLP-01

Title Test the Speech-To-Text recognition.

Pre-Requisite Microphone enable and not blocked in the browser

Expected Outcome

The speech or at least the part of the speech

considered in the interaction grammar has been

converted to text.

Actions Expected Result Result Comment

The user clicks the “voice

interaction” button and records

the message

The user receives the

converted text.

The voice is

converted to

text, this text can

be sent to the

user or uploaded

to the server for

processing.

Test ID NLP-02

Title Test the Text-To-Speech

Pre-Requisite
A textbox with some text and the selection of a voice

(optional)

Expected Outcome Audio output of the text

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 57

Actions Expected Result Result Comment

The user writes a text in a text box. The UI outputs the

same text in audio

format.

The UI outputs

the text in audio

(in the selected

language)

Test ID NLP-03

Title Test extended NLP functionalities

Pre-Requisite -

Expected Outcome A NLP functionality is demonstrated apart from STT and

TTS

Actions Expected Result Result Comment

The user writes a text in a text box.

The system analyses

the text input to

provide advanced

functionalities

iConversation

with the

backend

Sentiment

Analysis was

the original

idea for an

extended NLP

functionality,

but due the

integration

with the

Workers

Training

Platform, a

chatbot was

more

interesting as

a

demonstrative

case.

4.2.1.4.6 Evaluation

This module is not finally included in shopfloor pilots, and has been integrated with the

Workers Training Platform (WP5), Secure Storage (WP2/WP3) and Marketplace and project

website (WP7/WP8) to allow public access to any interested user. This platform is accessible

from the STAR project website and allows interaction with conversational agents through voice

and text using NLP technologies, as mentioned in the module. We have called this integrated

solution Multimodal Workers Training Platform, being the word "multimodal" the one that

refers to NLP technologies.

To evaluate this tool, we conducted sessions with 15 different workers and focused on the

usability of the solution. For this, we used the System Usability Scale (SUS) methodology

(https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html), which is

relevant for interface evaluation. The results placed the solution above 80/100 which is

https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 58

considered grade A, and therefore a more than positive result. The system was considered

easy to use and the user felt confident in using it. The evaluation also gave us some clues for

future development and research, such as the possibility of using more complex language

models to enable open domain discussions.

4.2.1.5 Feedback Module

4.2.1.5.1 Short Description

The feedback module implements means to obtain users' explicit or implicit feedback

regarding particular information displayed to them at the user interface.

4.2.1.5.2 Relation with the Reference Architecture

The Feedback module provides means to gather feedback regarding predictions, decision-

making options and explanations created by means of explainable artificial intelligence

techniques. Such feedback is recorded along with the specific containers where the

information is presented at the user interface. The recorded feedback (information displayed

and particular feedback on usefulness or user choices) can be used to further enhance the

applications and particular components (e.g., the quality of explanations, or the quality of

predictions, among others).

The feedback module does not directly interact with other architecture components, but rather

gathers useful information that can be later consulted by them.

4.2.1.5.3 Dependencies

Major libraries: The Feedback module was built from scratch in Python. Currently, its major

dependencies include: python >= 3.7, and Fast API.

Environment: The Feedback module is envisioned to be packaged as a docker container to

be platform independent and make management of python and OS dependencies easier and

more flexible. The Docker instance will be running some Linux distro.

Components: It is provided as a service interfacing with other services, with no intelligence

of its own. It could be eventually evolved to apply some level of intelligence.

4.2.1.5.4 Availability

The code has been made available in a project-specific repository (https://github.com/star-

eu/module-feedback). The Docker images are yet to be made available in the artefact store.

4.2.1.5.5 Installation/Deployment guidelines

The installation and deployment guidelines have been provided at the README.md file at the

root of the project-specific repository.

4.2.1.5.6 Documentation

The REST API documentation is provided as a Swagger REST API endpoint. The REST API

documentation can be accessed at the following endpoint: http://[ip]:[port]/docs.

4.2.1.5.7 Test Cases

Test ID FM-01

Title Add feedback container.

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 59

Pre-Requisite

• A user interface exists, for which the

feedback container will be registered.

• Some name to be assigned to the

feedback container.

Expected Outcome

• A feedback container is created and

persisted in the database

• A response is given to the user, providing

details (id and feedback container name)

regarding the feedback container.

Actions Expected Result Result Comment

The user sends an HTTP GET request to

MODEL_REPOSITORY_BASE_URL/feedback

-containers/ REST endpoint, with a JSON

body (details provided at the Swagger

endpoint).

The user receives an

HTTP response with a

200 status code and a

JSON body with details

regarding the feedback

container.

Matches

the

expected

result.

Test ID FM-02

Title Retrieve feedback container by name.

Pre-Requisite
A feedback container with the given name

exists.

Expected Outcome

The feedback container is retrieved and the

details provided to the one performing the

request.

Actions Expected Result Result Comment

The user sends an HTTP GET request to

MODEL_REPOSITORY_BASE_URL/feedback-

containers?name={some-container-name}.

The user receives an

HTTP response with a

200 (OK) status code

and the feedback

container details are

displayed in the

response content in

JSON format.

Matches

the

expected

result.

Test ID FM-03

Title Add feedback.

Pre-Requisite Add a particular feedback

Expected Outcome
Feedback provided by the user is persisted into

the database.

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 60

Actions Expected Result Result Comment

The user sends an HTTP POST request to

MODEL_REPOSITORY_BASE_URL/feedbacks/

REST endpoint, with a JSON body (details

provided at the Swagger endpoint)

The user receives an

HTTP response with a

200 (OK) status code

and the feedback is

successfully persisted

into the database.

Matches

the

expected

result.

4.2.2 Use Cases
The purpose of this section is to be used as a reference on how the different components

from WP4 explained above are going to be used within the context of WP6 and are

prepared/tested in this task/deliverable. The table contains the components from WP4 that

are planned to be utilised in the different pilots.

Use Case ID Use Case title Involved Component(s) Short Description

PLC UC #1 Easy
reconfiguration

for automated
part handling

• Active Learning (AL)

• XAI Techniques

High flexibility is
important and

therefore this use
case aims to test the
flexibility of the AI

algorithm to change
from one product to
another one within a

limited timeframe.

PCL UC #2 Human
supervised

learning for visual
quality
inspections

• Simulated Reality (SR)
• XAI Techniques

Once the AI algorithm

is trained and taken in

operation, we should

still be confident in its

performance. This

use case aims to

support workers with

tools to enable them

to do this.

4.2.3 Inter WP4 integration and communication
Our current emphasis lies in examining the interaction and synergy among the components

developed and designed within this particular Work Package (WP4). Our goal is to present a

coherent depiction of how inputs/outputs of these components intertwine and establish

communication across different components within this WP4 of the project:

• Simulated reality module requires data instances to train a generative model. Once
the model is trained, the generative model can be used to generate new data instances
and contribute them to a particular database or dataset.

• Active Learning module may require interacting with the machine learning model
to understand how the data instances are perceived by the machine learning model
(e.g., whether the model is uncertain about their classification). Active learning

strategies are used to retrieve data instances from a database or dataset, and then
provided to train the machine learning model. After a new machine learning model is

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 61

available, a new iteration can be performed.

• Explainable Artificial Intelligence requires inputs related to a machine learning
model. Such inputs depend on the kind of prediction being made and the desired
explanation. Usually, Explainable Artificial Intelligence may require the data used to

perform a prediction (e.g., image or feature vector), and the machine learning model
used to perform a prediction. The forecast explanation is served to a particular
stakeholder.

• Feedback module gathers feedback from different components displayed to the
users. While not directly associated to other modules, the collected feedback can be
used to improve the abovementioned modules (e.g., by collecting feedback regarding

a particular prediction (e.g., was the prediction correct?) or explanation (e.g., was the
explanation useful?)).

The relationship between the abovementioned components is depicted in the following Figure:

Figure 17: Interaction between WP4 components.

4.3 Human Centred Simulation and Digital Twins

4.3.1 Components

4.3.1.1 AMR Safety

4.3.1.1.1 Short Description

This component merges two subsystems

1. The safety zone detection

2. The AMR fleet management

The first component, described in D5.6, is devoted to improving the understanding of a global

picture of the workfloor. The safety zone detection system has the aim to complete the global

awareness of the factory with a computer vision approach providing “spatial heatmaps”

containing information on objects and workers’ positions in the workfloor on the IoT

Middleware in order to update the HDT picture.

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 62

The fleet management component, presented in D5.8, accesses to the heatmaps allowing the

AMR module to dynamically define and update the best paths for the robots, avoiding

obstacles and introducing factually safety when humans and robot share the same spaces.

4.3.1.1.2 Relation with the Reference Architecture

The building blocks presented in the previous section, are integrated into the HDT system

described in D5.1 and presented in the figure below (Figure 18). To support the Privacy by

Design principle, the Safety Zones Detection System publishes on the HDT system only the

results of the computation as heatmaps with the information on objects and workers’ positions

in the workfloor. From the HDT Middleware, the AMRs access to the results of this module

and consequently, they will adapt their behaviour.

Figure 18: Safety Zone Detection & AMR Fleet Optimizer physical view

4.3.1.1.3 Dependencies

The Safety Zones Detection is composed of several Docker images and a Docker compose file

is used to manage these containers.

4.3.1.1.4 Availability

The component (with the 2 sub-systems) is still in progress. It is not published yet. The

software will be not publicly available. However, the “Safety Zones Detection” Docker images

will be made available within the project to the partners of use case Human Behavior

Prediction and Safety Zones Detection.

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 63

4.3.1.1.5 Installation/Deployment guidelines

The Safety Zones Detections deployment will be fully based on Docker Compose. The

component (with the 2 sub-systems) is still in progress. It is not available yet.

4.3.1.1.6 Documentation

The documentation is in progress.

The Inputs:

• For the Safety Zones Detection: Stream from cameras RTSP

• For the AMR fleet Optimizer: FactoryOccuppancy (Safety Zones outputs), the status of
the AMRs, their current positions, current speed, current orientation.

 Data From To

battery

status/autonomy

State descriptor (UUID3) structure:

StructBased

 – batteryStatus: NumberBased

 – unitOfMeasure: StringBased

 – factoryEntityID: StringBased

Message example

TOPIC:

HDT/UUID1/state/UUID3

 MESSAGE:

1652965322501#{"batteryStatus": 5,

"unitOfMeasure": "aUnit", "factoryEntityID":

“UUID1”}

AMR

(Robotino)

AMR

Fleet

Optimizer

current position State descriptor (UUID4) structure:

StructBased

 – currentX: NumberBased

 – currentY: NumberBased

 – coordinateSystem: StringBased

 – factoryEntityID: StringBased

Message example

TOPIC:

HDT/UUID1/state/UUID4

 MESSAGE:

AMR

(Robotino)

AMR

Fleet

Optimizer

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 64

1652965322501#{"currentX": 12.3,

"currentY": 27.5,

"coordinateSystem":"ABC","factoryEntityID"

: "UUID1"}

current speed (if

may be sent

together with

current position)

State descriptor (UUID5) structure:

StructBased

 – currentSpeed: NumberBased

 – unitOfMeasure: StringBased

 – factoryEntityID: StringBased

Message example

TOPIC:

HDT/UUID1/state/UUID5

1652965322501#{"currentSpeed": 2.9

"unitOfMeausure": "km/h",

"factoryEntityID": "UUID0"}

AMR

(Robotino)

AMR

Fleet

Optimizer

current

orientation

(optional)

State descriptor (UUID6) structure:

StructBased

 – currentOrientation: NumberBased

 – factoryEntityID: StringBased

Message example

TOPIC:

HDT/UUID1/state/UUID6

1652965322501#{"currentOrientation":

12.4, "factoryEntityID": "UUID1"}

AMR

(Robotino)

AMR

Fleet

Optimizer

GlobalOccupancy

(a.k.a. heatmap)

State descriptor (UUID10) structure:

StructBased

 – GlobalOccupancy: ListBased

 – HumanOccupancy: ListBased

 – StructBased

 – cellIndex : NumberBased

 – occupancy : NumberBased

Video

Analytics

(a.k.a.

SafetyZone

Detection)

AMR

Fleet

Optimizer

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 65

 – ObstacleOccupancy: StructBased

 – Type: StringBased

 – ListBased

 – cellIndex : NumberBased

Message example

TOPIC:

HDT/UUID2/state/UUID10

1652965322501#{"FactoryOccupancy":

[“HumanOccupancy” : [{“cellIndex”: 3,

“occupancy”: 1.0}, {“cellIndex”: 5,

“occupancy”: 2.0}, {“cellIndex”: 12,

“occupancy”: 1.0}] , “ObstacleOccupancy” :

{“ Type”: “WokingStation1”, [1,2,3]},

“ObstacleOccupancy” : {“ Type”:

“WokingStation4”, [24,25,26]}

]], "factoryEntityID": "UUID2"}

Note that the FactoryOccupancy is also called spatial heatmap.

The Outputs:

• From the Safety Zones Detection: This sub-system provides the spatial heatmaps with
the object and human occupancies.

• From the AMR fleet Optimizer: This sub-system will send moving commands to each
AMR for the fleet. For a list of possible commands, see the table below.

 nextWaypoint State descriptor (UUID7) structure:

StructBased

 – nextX: NumberBased

 – nextY: NumberBased

 – factoryEntityID: StringBased

Message example

TOPIC:

HDT/UUID2/state/UUID7

1652965322501#{"nextX": 12.2, "nextY":

12.3, "factoryEntityID": "UUID2"}

AMR

Fleet

Optimizer

AMR

(Robotino

)

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 66

nextPath State descriptor (UUID8) structure:

StructBased

 – nextPath: ListBased

 – StructBased

 – x: NumberBased

 – y: NumberBased

 – factoryEntityID: StringBased

Message example

TOPIC:

HDT/UUID2/state/UUID8

1652965322501#{"nextPath": [{“x”: 12.3, “y”:

12.4}, {“x”: 13.3, “y”: 13.4}, {“x”: 14.3, “y”:

14.4}], "factoryEntityID": "UUID2"}

AMR

Fleet

Optimizer

AMR

(Robotino

)

nextAction State descriptor (UUID9) structure:

StructBased

 – action: StringBased

 – factoryEntityID: StringBased

Message example

TOPIC:

HDT/UUID2/state/UUID9

1652965322501#{"action": “move”},

"factoryEntityID": "UUID2"}

Actions may be predefined, e.g., [move, stop,

charge].

AMR

Fleet

Optimizer

AMR

(Robotino

)

4.3.1.1.7 Test Cases

Test ID AMR-01

Title Detect the position of the human using real-time RGB cameras

Pre-Requisite

• Pretrained neural network parameters for human detection

• RTSP Cameras

• Cameras’ calibrations and global map of the factory

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 67

Expected

Outcome
People are well positioned

Actions Expected Result Result Comment

Operator inspects

the module(s)

• Humans are

detected

• People are well

positioned in 3D

real scene

 a Docker container

ready to be

deployed

Several tests on

DFKI factory videos

Test ID AMR-02

Title
Detect the position of the moving object (robot for example) using real-

time RGB cameras

Pre-Requisite

• Background model or a few minutes of the empty scene

• RTSP Cameras

• Cameras’ calibrations and global map of the factory

Expected

Outcome
Moving object is well positioned

Actions Expected Result Result Comment

Operator inspects

the module(s)

• Moving objects are

detected

• Moving objects are

well positioned in 3D

real scene

Docker container

ready to be

deployed

Several tests on

DFKI

factory videos

Test ID AMR-03

Title
Detect the position of the static object of interest (new object for

example) using real-time RGB cameras

Pre-Requisite

• Pretrained neural network parameters for object detection and

classification

• Background model or a few minutes of the empty scene

• RTSP Cameras

• Cameras’ calibrations and global map of the factory

Expected

Outcome
Moving object is well positioned

Actions Expected Result Result Comment

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 68

Operator inspects

the module(s)

Objects of interest are

detected and are well

positioned in 3D real

scene

The algorithm

detects and

classifies the

object of interest

(i.e. robotino)

Test ID AMR-04

Title Static obstacles avoidance at the planning level

Pre-Requisite
• Empty map of the environment

• Obstacle presence (coming from Video analytics)

Expected

Outcome
Path avoiding obstacles

Actions Expected Result Result Comment

Launching

pathfinding

requests (from a

specific origin to

a specific

destination)

Path can be displayed (in

a virtual environment)

which allows to check

wrong behavior (collision)

results ok in

simulation

Simulation capabilities

allow to test in a wider

scope than just the

real environment

Test ID AMR-05

Title Human avoidance anticipation at the planning level

Pre-Requisite

• Empty map of the environment

• Obstacle presence (coming from Video analytics)

• Factory occupancy (a.k.a. heatmaps)

Expected

Outcome
Path anticipating crowded areas

Actions Expected Result Result Comment

Launching

pathfinding

requests (from

some specific

origin to a

specific

destination)

Path can be displayed (in

a virtual environment)

which allow to check

wrong behavior (passing

through crowded areas)

results ok in

simulation

Simulation capabilities

allow to test in a wider

scope than just the

real environment

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 69

4.3.1.2 Human Centred Digital Twin

4.3.1.2.1 Short Description

The Human Centred Digital Twin (HDT) is an extensible and flexible IIoT-based platform

supporting the creation of customised data representations of production systems and their

entities, including humans. It features a modular infrastructure with interchangeable

components, which ease the digital twin instantiation and ramp-up.

4.3.1.2.2 Relation with the Reference Architecture

The HDT is a core component within the Reference Architecture (see Figure 2 from D2.6).

Data from the shopfloor are sent to the HDT, which models all the entities living in the factory

(including equipment, devices, and humans), as well as functional modules providing evidence

about such entities (e.g., Fatigue Monitoring System).

4.3.1.2.3 Dependencies

The HDT is composed of different backend services to manage digital models and their

orchestration. The main service (orchestrator) is a Java Spring application server that

orchestrates the other components and allows users to customise their digital factory

representation. To support the data flows involving devices in the shopfloor, the HDT includes

an MQTT-based broker. Finally, to persist data flowing on the broker, the HDT employs an

additional Java application (hdm) that persists static data into a NoSQL database (i.e.,

MongoDB), and dynamic data into a timeseries database (i.e., InfluxDB). The persisted

historical data are exposed by means of another Java Spring Application (hdm-web). Both

orchestrator and hdm-web services are accessible via HTTP REST APIs.

4.3.1.2.4 Availability

The software of HDT components is not publicly available. However, the Docker images of the

components are made available within the project to all the interest partners. Docker images

are stored in a proprietary Docker registry, accessible via token-based authentication.

4.3.1.2.5 Installation/Deployment guidelines

The deployment of HDT components is fully based on Docker Compose and deploys all the

HDT components as depicted in Figure 19. The installation/deployment guidelines are

available in the project repository.

Figure 19: Deployment view of HDT components

https://gitlab.com/star-ai/human-digital-twin-core-infrastructure/hdt-core

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 70

4.3.1.2.6 Documentation

The components documentation is available in the project repository, with some code

examples. Services exposed via REST APIs are documented with Swagger (OpenAPI

specification).

4.3.1.2.7 Test Cases

Test ID HDT-01

Title Register a new functional module to the HDT.

Pre-Requisite The orchestrator service is up and running

Expected Outcome
The orchestrator service registers the new functional

module.

Actions Expected Result Result Comment

The client sends an HTTP

POST request to

ORCHESTRATOR_BASE_U

RL/api/v1/functional-

module, passing a valid

FunctionalModuleDto in the

body.

The user receives an HTTP

response with a 200 status

code and a body containing a

ResponseFunctionalModuleD

to.

Test

succes

sful

DTOs are described

in Swagger at

ORCHESTRATOR_B

ASE_URL /swagger-

ui/index.html

Test ID HDT-02

Title Activate a functional module, by ID

Pre-Requisite
The functional module has been already registered in the

HDT.

Expected Outcome
The functional module is activated. The event is published on

the MQTT broker.

Actions Expected Result Result Comment

The user sends an HTTP POST

request to

MODEL_REPOSITORY_BASE_U

RL /api/v1/functional-

module/activate/functional-

module/{functionalModuleId}.

The user receives an HTTP

response with a 200 status

code. The response body

contains a

ResponseFunctionalModuleAc

tivationResponseDto, which

briefly summarises the

current status of the HDT

(e.g., list of active entities in

the factory).

Test

succes

sful

DTOs are described in

Swagger at

ORCHESTRATOR_BAS

E_URL /swagger-

ui/index.html

https://gitlab.com/star-ai/human-digital-twin-core-infrastructure/hdt-core

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 71

Test ID HDT – 03 (FaMS - 01)

Title
Communication between the HDT Core Infrastructure and the

FaMS

Pre-Requisite
• HDT and FaMS configured, deployed and functioning.

• Gateway and wearables are active.

Expected Outcome
Data streamed from the wearables are stored in the MQTT

broker and becomes available to FaMS via HDM-Web

Actions Expected Result Result Comment

The user logs in and starts a

new session on the gateway.

The streaming of

physiological data starts;

data are written to the MQTT

broker, and the HDM

automatically persists them

in InfluxDB. FaMS is then

able to access physiological

data by querying the HDM-

Web API. FaMS estimates the

fatigue exertion level and

publishes the result on the

MQTT broker.

Test

succes

sful

Test ID HDT - 04

Title
Communication between the HDT Core

Infrastructure and the Robotino

Pre-Requisite
• HDT Core Infr. deployed and functioning

• Robotino’s agent deployed and functioning.

Expected Outcome
Data (e.g., battery level) are streamed from the

Robotino to the HDT Core Infrastructure

Actions Expected Result Result Comment

The Robotino’s agent is configured in

the HDT Core Infr.

Streaming of Robotino’s

data are available and

published on the HDT

Core Infr. Robotino’s is

able to read data on the

HDT Core Infr.

Not yet

tested.

Test ID HDT - 05

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 72

Title

Communication between the HDT Core

Infrastructure, Safety Zones Detection System and

the AMR Fleet Optimizer

Pre-Requisite

HDT Core Infr., Safety Zones Detection System and

AMR Fleet Optimizer configured, deployed and

functioning.

Expected Outcome

Safety Zones Detection System and AMR Fleet

Optimizer are capable to read and publish data on

the HDT Core Infr.

Actions Expected Result Result Comment

The user activates a session. The two

modules read data on the HDT Core

and publish the results of their

computations.

AMR paths and workers

positions are published

on the HDT Core

Infrastructure. AMR

Fleet Optimizer reads

Robotino’s data and

workers positions

published on the HDT

Core Infr.

Not yet

tested.

4.3.1.3 Fatigue Monitoring System

4.3.1.3.1 Short Description

The Fatigue Monitoring System (FaMS) uses a machine learning model that estimates the

exertion level of subjects based on static data (e.g., age, weight, etc.) and dynamic data (e.g.,

HR, EDA, skin temperature). Wearable devices are used to collect the subjects’ physiological

data, while static data are collected through a questionnaire. With the implemented algorithm

it is then possible to derive the stress level of the user. This ‘AI module’ can be used alone to

understand the exertion level of the workers who are performing a task, or it can also be used

by ‘decision maker modules’ to make human-aware decisions.

4.3.1.3.2 Dependencies

The Fatigue Monitoring System is a plain Python application exploiting the sci-kit-learn library.

It depends on the Human Centred Digital Twin from which it retrieves static and dynamic

data, and where it publishes new computed exertion levels.

4.3.1.3.3 Availability

The software is not publicly available. However, the Docker image of FaMS is made available

within the project to all the interest partners. The Docker image is stored in a proprietary

Docker registry, accessible via token-based authentication.

4.3.1.3.4 Installation/Deployment guidelines

The deployment is fully based on Docker Compose. The user guide is available in the project

repository.

4.3.1.3.5 Documentation

The documentation is available in the project repository.

https://gitlab.com/star-ai/human-digital-twin-core-infrastructure/hdt-core
https://gitlab.com/star-ai/human-digital-twin-core-infrastructure/hdt-core
https://gitlab.com/star-ai/human-digital-twin-core-infrastructure/hdt-core

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 73

4.3.1.3.6 Test Cases

Test ID FaMS 01 (HDT-03)

Title
Communication between the HDT Core

Infrastructure and the FaMS.

Pre-Requisite
HDT and FaMS configured, deployed and

functioning; Gateway and wearables active.

Expected Outcome
Data are streamed from the wearables to the HDT

Core Infrastructure and available for the FaMS

Actions Expected Result Result Comment

The user logs in and activates the

session on the gateway.

Streaming of

physiological data,

FaMS is able to access

to physiological data

streams and quasi-

static data in the HDT

Core Infrastructure;

FaMS estimates the

fatigue exertion level

and publishes the result

on the HDT Core

Infrastructure.

Test

successful

4.3.1.4 Workers Activity Recognition

4.3.1.4.1 Short Description

Worker’s activity recognition is to prevent collision between the worker and mobile robot in

the manufacturing line. The mobile robot moves from a module to another module. Mobile

robot should predict the worker’s next action to prevent the accident with the worker. To

recognize the worker’s activity, we attach wearable sensors on the worker’s body, such as on

both wrists. The collected data are processed by designed neural networks for activity

recognition.

4.3.1.4.2 Relation with the Reference Architecture

The activity recognition module receives the input signals from the wearable sensors and

sends the output of the recognized worker’s activity. In its current form, it connects to the

STAR machine learning and analytics platform.

4.3.1.4.3 Dependencies

• Major libraries: PyTorch

• Environment: Python

• Components: IMU sensors

4.3.1.4.4 Availability

This module is still in progress. It is not published yet.

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 74

4.3.1.4.5 Installation/Deployment guidelines

Not available yet.

4.3.1.4.6 Documentation

• Input: CSV files from the IMU sensor
1st column: timestamp
2-4th column: ACC 3-channels from left wrist sensor

5-7th column: Gyroscope 3ch data from left wrist sensor
8-10th column: Magnetometer 3ch data from left wrist sensor
11th column: Capacitive sensor data from left wrist sensor
12-14th column: ACC 3ch data from right wrist sensor

15-17th column: Gyroscope 3ch data from right wrist sensor
18-20th column: Magnetometer 3ch data from right wrist sensor
21st column: Capacitive sensor data from right wrist sensor

• Output: JSON file. An example is given below:

currentActivity: openDoor,
nextActivities: {
 1: lockDoor,
 1Perc: 90%,

 2: goToNextModule,
 2Perc: 10%
}

4.3.1.4.7 Test Cases

The following test is foreseen to validate the component:

Test ID HAR-01

Title
Detect the activity of the human using real-time

sensor data

Pre-Requisite

• Pretrained neural network parameters for

human activity recognition

• Attached wearable sensors on worker’s body

Expected Outcome Human activity is classified

Actions Expected Result Result Comment

Human inspects the module(s) • The current

activity is detected

• Precision of the

activity detection

is returned

• Possible next

actions with their

accuracies are

returned

Not yet

executed

.

The return

format is still

to be defined.

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 75

4.3.2 Use Cases
The purpose of this section is to be used as a reference on how the different components

from WP5 explained above are going to be used within the context of WP6 and are

prepared/tested in this task/deliverable. The table contains the components from WP5 that

are planned to be utilised in the different pilots.

Use Case ID Use Case title Involved Component(s) Short Description

PCL Pilot #3 Worker fatigue
and mental stress
in quality

inspection

• Human Centred
Digital Twin

• Fatigue Monitoring
System

The use-case aims to detect
and monitor workers’
fatigue when performing

manual labelling of images.
In particular, we tackle the
visual inspection use case

(Philips UC2). Detecting
workers’ fatigue, attention,
and/or mental stress during

the labelling process can be
helpful at least in two ways:
understand whether the
labelled data can be trusted

or should be reviewed by
multiple workers, to ensure
the accuracy of the final

label provided; suggest a
break or change of activity
to the user, to avoid

disengagement.

DFKI Pilot #1 Human Intention
Recognition.

• Human Centred
Digital Twin

• Workers Activity
Recognition

This use-case aims to detect
worker’s activities to

prevent collisions between
mobile robot and the
worker. The worker wears

wearable gloves and watch
with IMU and capacitive
sensors.

DFKI Pilot #2 Robot
Reconfiguration
Based on the

Dynamic Layout.

• Human Centred
Digital Twin

• AMR Safety

• Safety zone
detection

Plan to dynamically update
the navigation map of the
scene, by considering

human and/or other (non-)
moving objects in the
environment by two ceiling

cameras installed in the
testbed. This use case also
enables easier

reconfiguration of the robot
in case the layout of the
environment (including the

production stations)
changes.

DFKI Pilot #3 Dynamic Path

Planning Using
• AMR Safety The two use cases for DFKI

Pilot #1 and #2 are going to

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 76

Both First and
Second Use Cases

• Safety zone
detection

• Human Centred
Digital Twin

• Workers Activity
Recognition

be combined to have a safe
environment for the

workers and the hardware
equipment considering the
AMR in the scene. The

prediction of next human
activity is utilized in the path
planning and remapping the

unoccupied area

IBER Pilot #3 Employee
Training for

Reduction of
Human Errors

• Fatigue Monitoring
System

The third case study of the
IBER pilot project foresees

the identification of the
mental fatigue of operators
on the assembly line,

through the monitoring of
recorded errors (non-
conforming product).

4.3.3 Inter WP5 Integration and Communication
WP5 integration relies on the HDT Core Infrastructure. Each component developed within the

workpackage is considered as a Functional Module. The Functional Modules are pluggable

components, including AI modules, that can be easily added or removed from the HDT. These

Functional Modules can be subscribed to the IIoT Middleware topics of their interest, in order

to use data streams from sensors and other Functional Modules’ outputs to perform their

computations. In addition, Functional Modules can also retrieve quasi-static data from the

HDT by means of REST API provided by the Orchestrator. The Functional Modules also have

the possibility to publish their outputs to the IIoT Middleware.

Crucially, the efficacy of this system hinges upon the HDT Core Infrastructure model,

epitomized by its entities, namely FunctionalModelInput and FunctionalModuleOutput.

Leveraging these entities, each module can effortlessly establish connections with the HDT

Core Infrastructure, thereby facilitating access to other interconnected Modules. Figure 20

provides the main integration currently in completed. Other can be easily implemented if

needed thanks to the functions of the HDT Core Infrastructure.

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 77

Figure 20: WP5 main integrations

For a comprehensive understanding of this integration paradigm, refer to the detailed insights

presented in documents D5.1 and D5.2.

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 78

5 Testing, Validation, and Integration Roadmap

5.1 Lab Requirements, and Environment
In this deliverable, as previously stated, the primary focus is to offer an extensive range of

knowledge pertaining to the testing, validation, and integration of the STAR platform. To

facilitate the testing, validation, and integration of various services and modules provided by

technology providers, DFKI is tasked with providing a dedicated server capable of hosting and

executing all components from WP3, WP4, and WP5 module providers. Access to this server

is extended to all component owners.

5.1.1 General Asset List

At the outset of Task 6.2, we initiated the creation of a General Asset List and shared it with

all project partners, requesting them to continually update the information for each respective

component. Consequently, we now possess an encompassing, detailed, and referenceable

Excel file that houses vital information for each component, along with relevant insights into

integrated use cases and pilots.

This list encompasses various fields. In the following section, we will delve into the various

information available in this list:

1. Component: The components directly associated with T6.2, intended for validation,

testing, and integration into the DFKI server, provided within the scope of the STAR

project.
2. Component Owner: The technology provider(s) responsible for offering the mentioned

modules/technologies.

3. Related Task: The task within the designated work package that pertains to the

respective technology/component.

4. Pilots to be Applied: This section identifies the intended pilot and corresponding use

case scenarios where the component is utilized, tested, and validated.

5. Dependency with other components (Input/output): If the component/technology is

interconnected with other component(s)/technology(ies) from different task(s). This

relationship could involve providing inputs for other technologies or utilizing outputs

from other technologies.

6. Component Version: The current version of the respective component.

7. Communication Protocol: The available protocol(s) to establish connectivity with the

technology(ies) (e.g., Kafka, TCP-IP, MQTT, HTTPS/HTTP).

8. Availability (Code, Artifact): Indicates whether code or artifact is available from the

asset(s) (e.g., Available, Proprietary).

9. Dockerization: Specifies whether the code/artifact can be dockerized. This is crucial for

the effective packaging of delivered software into containers using Docker services,

which ease the utilization in the service platform and CI/CD.

10. Hardware Requirements: The specific hardware requirements suitable for operating

the component/asset (e.g., CPU, HDD, Memory).

11. Possible Lab Deployment Date: The anticipated date when the deployment of the

component becomes feasible.

12. Status of the Components: Indicates whether the component is fully developed or

currently under development.

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 79

13. API Documentation: Provides information about the presence of any documentation

or link to documentation available for the component/asset.

14. Test Availability (Yes/No): Indicates the availability of any automated/code tests for

the component/asset.

15. Bottom-up Requirement mapping: The bottom-up requirements for the corresponding

component, which have been captured from WP2.

16. Status of the Requirement: This section specifies the status of each bottom-up

requirement, indicating whether it is for example, "Done," "Partially Done," or

"Pending."

17. Link to Source Code: Offers a hyperlink to the code, if any open-source code is

available for the component/asset.

18. Contact Person: This section provides the information of the responsible person(s) for

each of the components, including their names, roles, and contact details.

5.1.2 Hardware requirement

Of particular significance within this context is the specification of minimum requirements for

each component. Building on this information, we have configured the service platform to

embody capabilities that align with the specific needs of our ecosystem.

In order to accomplish this objective, we have documented the minimum hardware

requirements necessary for the STAR platform to undergo testing, validation, and seamless

integration within the service platform. The service platform has been designed to

accommodate the usage and accessibility of all components. The hardware specifications for

this service platform, hosted in the DFKI Kaiserslautern and accessible via the internet, are

outlined below:

• Disk Space: 100GB

• CPU: 8 Core

• RAM: 64GB

• Accessibility through the Internet

• Docker Service package installed

Please note that these specifications have been established to ensure optimal performance

and efficiency while utilizing the STAR platform within the service ecosystem. Consequently,

they can test and evaluate their components on the server and finally all the components can

be integrated into the STAR platform.

5.2 Supported Scenarios
In T6.2, "Service Platform Integration and Lab Validation," we performed validation exercises

for both inter- and intra-Work Package (WP) components. However, in the initial version of

this deliverable (D6.3), our focus was primarily on the validation of inter-WP components.

Now, in this final version of the document (D6.4), we have expanded our scope to encompass

both inter- and intra-WP components. In this specific task, we meticulously considered various

supported scenarios that can be effectively implemented in the subsequent stages of this task.

Following, there are some of the potential scenarios explained.

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 80

5.2.1 Automation Tools
To facilitate validation, testing, and integration, we initially employ a manual setup. As each

module/asset undergoes updates, technology providers are manually testing their artifacts to

meet the task requirements. If automation CI/CD tools are necessary, we can leverage an

integrated test service such as Jenkins or GitHub CI/CD services. This approach ensures

efficient and reliable validation processes throughout the project.

5.2.2 Validation the Components
To validate the components based on the KPIs, technology providers begin with

straightforward scenarios. Each Work Package (WP) completed its respective validation phase.

Subsequently, in the next stage, they have conducted the intra WP validation. This approach

ensures comprehensive and thorough validation across the project.

5.2.3 Evaluation the accuracy of the Architectures

The validation of each component is the responsibility of the respective component providers.

They will perform validation for their artifacts/components each time they make updates. This

validation process encompasses not only the validation of the components themselves but

also the interaction and communication of the components with other components and pilots

within and between Work Packages (WP). This approach ensures that each component is

thoroughly tested and validated in the context of its integration with the overall system and

other components.

5.2.4 The Process of Accessing the Data
To optimize the validation and testing phase, data samples and recordings for each component

can be collected either offline or online. To access the essential input data for the

components/software from technology providers, we have devised a comprehensive plan to

store samples for each data source, encompassing various scenarios. These stored samples

are served as the basis for testing the artifacts.

In the updated version, it may become necessary to establish communication with the

hardware providers responsible for supplying data to the artifacts. This communication could

involve interacting with devices like cameras, sensors, and actuators to ensure a seamless

data flow, resulting in effective validation of the components.

The technology providers bear the responsibility of handling this communication and

integration between the components and the data sources. This approach ensures a

collaborative effort to ensure the successful functioning of whole STAR system.

5.3 Integration of technical components with the Star Secure

Storage.
A pivotal aspect of this task 6.2 involves the seamless integration of components within the

STAR platform, establishing a robust ecosystem. Our focus centers on identifying the

infrastructural support required to interconnect various components effectively. This

integration plays a crucial role in shaping our test pilots' success and, hence, in the STAR

ecosystem.

To accomplish this objective, we have delved into the intricate details of the components that

exhibit internal connections within each Work Package (subsections 4.3.3, 4.2.3, 4.1.3). This

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 81

thorough examination facilitates a comprehensive understanding of the interrelationships

between each of the WP-level components.

In this section, we transition from an internal perspective to an intra-WP outlook, focusing

specifically on the integration actions between selected technical components from various

WPs with the Star Secure Storage.

The integration actions of the STAR Secure Storage were focused on onboarding various

technical tools and assisting their training processes. More specifically, the STAR storage

solution is a unified solution for storing/querying/managing data. Thus, it acts as a central

component in the STAR architecture in order to facilitate mainly the necessary data pipelines

used for the training of various tools.

One of the key tools is the AI Cyber Defence module which is now integrated with the secure

storage in order to acquire Binary files, i.e., images, which are used for evaluating the

mechanisms for the identification of poisoning and evasion attacks. To establish this

communication, the AI Cyber Defence tool integrates the necessary TRINO connectors to

query the respective resources to acquire the data required to perform the training of the tool.

More specifically, the AI Cyber Defence tool has been built in order to support image

streaming, as it is destined to perform in the context of visual quality inspection systems. It

is used to support the quality inspection processing for the PCL and IBER pilots. Thus, in order

to support the training of the tool, the STAR Secure Storage created the respective data

buckets, including the images of the products that will be used as the point of reference for

training the AI Cyber Defence models. The Shaver-shell, the deco-cap, and the soothers

datasets have been onboarded on the secure storage for supporting the visual inspection

actions for the PCL pilot, while the Assembly of Horizontal Lamellas Dataset was onboarded

for the visual inspection actions for the IBER pilot. The integration of the AI Cyber Defence

tool with the STAR storage has been completed, and the interconnection of the tools is also

highlighted as part of the internal architecture of the AI Cyber defence Tools which can be

found in D3.4.

In addition to the above-mentioned tools, in the context of the cross-work package integration

actions, the Fatigue Monitoring System (FaMS) is integrated with the STAR Secure Storage.

The former uses a machine learning model that estimates the exertion level of subjects based

on static data (e.g., age, weight, etc.) and dynamic data (e.g., HR, EDA, skin temperature).

The tool utilizes subjects’ physiological data, while static data are collected through a

questionnaire, so that to derive the stress level of the user. This ‘AI module’ can be used alone

to understand the exertion level of the workers who are performing a task, or it can also be

used by ‘decision maker modules’ to make human-aware decisions. In this context, the FaMS

has been integrated with the STAR storage in order to take advantage of the timeseries DB

features. The FaMS take advantage of the Hive connector in order to perform time-based

queries.

One of the most significant integrations, due to the fact that it includes components and

elements from multiple work packages, is the one demonstrated in the Workers Training

Platform. Specifically, the Worker Training Platform began to be developed in work package

5, where different modules for access to occupational information were implemented.

Subsequently, the benefit of integrating it with the NLP component that was being defined in

WP4 was seen. In this way, the Multimodal Workers Training Platform was built, which

appears as assets in the list of results of the STAR project.

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 82

Not only that, after discussions with WP7 and WP8, it was agreed that part of the training

assets selected in these work packages would be part of the training course recommendation

system offered by the Workers Training Platform. Also, that the Workers Training Platform

would be integrated into the project's website, as a value-added service for visitors. Finally,

and thanks to the capabilities offered by the WP2 and WP3 platform and security modules,

the Worker Training Platform is carrying out integration tests with the secure storage module

so that the database of training resources can be safely stored on the STAR platform and can

be updated there, before it is periodically consulted by the Multimodal Training Platform.

These two paragraphs exemplify the cross-workpackage collaboration that has taken place at

STAR and that continues to be addressed even during the last phases of the project. It is also

important to mention that at the content level there has also been collaboration between work

packages, since part of the theoretical-practical content generated in other workpackages,

such as the materials on Human Centricity developed in WP5, have been added to the

Marketplace and to the WP7 training assets.

The STAR secure storage has been integrated with the aforementioned tools, while potential

integration actions with other tools can be done until the end of the pilots testing, as the

interfaces are known and the tool onboarding process is straight forward.

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 83

6 Conclusion
The STAR project encompasses a diverse range of functionalities and technologies tailored for

research and industrial applications. The project's primary objective is to research, implement,

validate, and demonstrate trusted AI technologies that can be effectively utilized across

various production scenarios. This deliverable focuses on activities related to testing,

validation, and integration of components into the STAR platform, covering the following key

themes:

• Integration Platform and its relation to the STAR Reference Architecture: We delve
into the STAR reference architecture and the deployment/physical diagram at the WP
level, specifically designed for lab validation.

• Source code Repository and Tools: We make efforts to establish a repository to host
codes and artifacts for each component and technology, with a focus on Dockerization
and its support.

• Comprehensive Documentation of Components: A detailed list of target components
from WP3, WP4, and WP5, utilized in T6.2, is provided. Each component is
accompanied by a brief description, its relation to the STAR reference architecture,

dependencies on other packages/components, installation/deployment guidelines,
documentation, and test cases. The test cases, presented in separate tables for each
component, outline actions and expected results for atomic inter-component and WP-

level communication. Furthermore, each component is, presented in a separate table,
linked to the specific scenarios in which they are utilized within the pilots. Finally, in
each WPs section, we provide an overall overview of how the components within the

WPs communicate with each other at a detailed level.

• Test, Validation, and Integration Roadmap: This section outlines the activities carried
out in T6.2 throughout the task's lifespan, aimed at facilitating communication among

different technology providers and pilots to ensure a robust test, validation, and
integration phase for the STAR ecosystem. It encompasses the preparation of the lab
environment, general asset list documentation, and component requirements for

initializing an optimal service platform.

• Supported Scenarios: We provide guidance for technology providers to conduct and
manage both inter- and intra-WP testing, validation, and integration. This includes
communication approaches, CI/CD methods, and data sampling for the components.

• Lastly, we offer a comprehensive insight into the STAR ecosystem, illustrating how the
integration of components from various Work Packages enables us to achieve the final
version of the STAR ecosystem. This integration binds together diverse components,
shaping the ultimate form of the STAR ecosystem. Furthermore, we also noted that

there are a few remaining tasks to address in the coming months of the project's
duration.

Overall, this deliverable contributes to the realization of a cohesive and reliable STAR

ecosystem by addressing crucial aspects related to testing, validation, and integration of its

components and technologies.

D6.4 – Integrated STAR Platform-Final version

H2020 Contract No. 956573 Final v1.0, 16/11/2023

Dissemination level: PU -Public Page 84

References
Reference Name of document

[Afzal-

Houshmand 21]

Afzal-Houshmand, S. H. (2021, September). A Perfect Match: Deep

Learning Towards Enhanced Data Trustworthiness in Crowd-Sensing

Systems. In 2021 IEEE International Mediterranean Conference on

Communications and Networking (MeditCom), (pp. (pp. 258-264).

IEEE.).

[Afzal-

Houshmand 23]

Sam Afzal-Houshmand, D. P. (2023). Explainable Artificial Intelligence to

Enhance Data Trustworthiness in Crowd-Sensing Systems. 19th

International Conference on Distributed Computing in Smart Systems

and the Internet of Things (DCOSS-IoT), DOI 10.1109/DCOSS-
IoT58021.2023.00093 .

[Driessen 10] Driessen, V. (2010, January 5). A successful Git branching model.

Retrieved August 2021, from nvie.com: https://nvie.com/posts/a-

successful-git-branching-model/

[IBM 21] IBM Cloud Education. (2021, June 23). Containerization. Retrieved

August 2021, from https://www.ibm.com/cloud/learn/containerization

[Kisller 21] E. Kisller, “What Is a Container Registry? And Why Do I Need One?,” 26

March 2021. [Online]. Available: https://jfrog.com/knowledge-

base/what-is-a-container-registry/. [Accessed August 2021]

[Souza 18] H. Souza, “How to dockerize any application”, May 2018, available at:

https://hackernoon.com/how-to-dockerize-any-application-

b60ad00e76da, last accessed at: March 2020

[STAR-D2.7] STAR, “D2.7: STAR Reference Architecture and Blueprints- Final version”,

2022-06-30.

[STAR-D3.1] STAR, “D3.1 – Decentralized Reliability for Industrial Data and

Distributed Analytics- Initial version”, 2022-04-20

[STAR-D3.6] STAR, “D3.6 – Security and Data Governance Infrastructure-Final

version”, 2023-08

